
PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 1

PowerSmart™ Digital Control Library Designer User Guide

INTRODUCTION

The PowerSmart™ SDK is a Software Development

Kit (SDK) consisting of individual tools covering

system definition, system modeling, code

generation, control system fine tuning and real-time

debugging of fully digital control systems for

Switched-Mode Power Supplies (SMPS) for dsPIC®

Digital Signal Controllers (DSC).

This user guide section is meant to be a quick start

guide Digital Control Library Designer component

(psDCLD.exe), which can be used to select and

configure discrete time domain control systems, tailor

their features to the specific controller device used

and generate control libraries with a generic

application programming interface (API) to allow fast

and seamless integration of the generated source

code in custom firmware projects.

PLEASE NOTE

This software is still in a preliminary, experimental

state with limited support.

All features and functions are subject to change at

any time without further notice.

Please always refer to the most recent readme.txt

file to get updates on features and functions and to

review release notes and history.

• Technical Specifications:

Minimum System Requirements:

• Microsoft Windows® 7 32-bit

Operating System

• 4 GB RAM

• 64 MB of free hard drive space

Figure 1: PowerSmart™ SDK Digital Control Library

Designer Window

• Recommended Literature:

Data sheets and reference manuals are available on

http://www.microchip.com.

Latest Switch-Mode Power Supply Device Families:

• dsPIC33CH512MP506 data sheet

• dsPIC33CK256MP506 data sheet

Previous Switch-Mode Power Supply Device

Families:

• dsPIC33FJ64GS606 data sheet

• dsPIC33EP128GS806 data sheet

http://www.microchip.com/
http://www.microchip.com/dsPIC33CH512MP506
http://www.microchip.com/dsPIC33CK256MP506
http://www.microchip.com/dsPIC33FJ64GS606
http://www.microchip.com/dsPIC33EP128GS806

PowerSmart™
Digital Control Library Designer

UG20181026O-page 2 © 2021 Microchip Technology Inc.

(this page was left blank intentionally)

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 3

TABLE OF CONTENTS

INTRODUCTION ..1
TABLE OF CONTENTS ..3
1.0 Graphical User Interface Overview ...4
2.0 Frequency Domain Configuration (Bode Plot) ..5

2.1 Controller Selection ..7
2.2 Why using s-Domain Prototype Filters? ...7
2.3 Selecting the Right Controller ...7
2.4 Scaling Mode Selection ..8
2.5 Input Data Specification ... 10
2.6 Compensation Filter Parameters ... 14

3.0 Time Domain Window .. 15
3.1 Controller Block Diagram Window ... 16
3.2 Block Diagram ... 18

4.0 The NPNZ16b_t Data Structure .. 19
4.1 NPNZ16b_t Object Configuration .. 19

5.0 Code Generator Output Window ... 25
6.0 Code Generator Options .. 29

6.1 File & Function Label ... 30
6.2 Save/Restore Context .. 30
6.3 Basic Feature Extensions .. 32
6.4 Automated Data Interfaces .. 33
6.5 Data Provider Sources ... 34
6.6 Anti-Windup ... 35

7.0 Advanced Code Generator Options .. 38
7.1 Plant Measurement Support .. 39
7.2 Adaptive Gain Control .. 51
7.3 User Extensions ... 58

8.0 Code Generation ... 65
9.0 Using PS-DCLD With MPLAB® X IDE ... 68
10.0 Application Information / Troubleshooting ... 71

10.1 Application Information Window .. 71
10.2 Process Output Window .. 72

11.0 Common Use Cases and Application Guidance ... 73
11.1 Multiple Controllers using the same Assembly Library .. 73
11.2 Establishing Bi-Directional Control Systems ... 75

12.0 Table of Figures ... 82
13.0 Legal Terms For Development Boards Sold And Used In Europe Regarding ZVEI Regulations 83
LEGAL NOTICE ... 84
TRADEMARKS .. 84
CONTACT INFORMATION ... 85

PowerSmart™
Digital Control Library Designer

UG20181026O-page 4 © 2021 Microchip Technology Inc.

1.0 GRAPHICAL USER INTERFACE OVERVIEW

The main application window is divided into four sections a shown in Figure 2 below. The graphical user interface

(GUI) has been designed following Microsoft Win32 UX Guidelines to make it most intuitive to use. On the top of

the window you find menus giving access to files and application functions. A command bar has been added to

give quick access to most common functions of the application (1).

The main section of the window is divided into a User Configuration section (2) on the left. This is where all user

settings are made. On the right, an Application Output section (3) shows the results of the most recent user

configuration. Due to the complexity of digital compensator design, the results are split into multiple sub-sections

grouped by topics (Frequency Domain, Time Domain, Block Diagram and Source Code).

Figure 2: PowerSmart™ Digital Control Library Designer Main Window Overview

TABLE 1: MAIN WINDOW DESCRIPTION

No Description

1 Main Menu and Control Bar

2 User Configuration Panel

3 Application Output Panel

4 Application Status Information

1

2

3

4

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 5

2.0 FREQUENCY DOMAIN CONFIGURATION (BODE PLOT)

Figure 3: PowerSmart™ Digital Control Library Designer Frequency Domain View

TABLE 2: MAIN WINDOW DESCRIPTION

No Description

1 Controller Order and Number Format Selection

2 Input Data Specification

3 Compensator Configuration

4 Frequency Response (Bode Plot) of s-Domain and z-Domain transfer function

5 Digital Filter Coefficients derivation transcript with accuracy analysis of final values

6 Status bar indicating background activity and output messages

The z-Domain Controller configuration window is ordered into a left configuration plane and a right plane showing

the results based on recent settings. Both planes are separated in individual sub-planes (tabs) offering access to

settings of individual, functional blocks.

The default view starts with the controller selection and frequency domain configuration on the left and the Bode

Plot graph of the transfer function on the right. Below the Bode plot a data table shows the derivation transcript of

the calculation result. This table is also used to display warnings of the number accuracy analyzer.

3

4

5

6

1

2

PowerSmart™
Digital Control Library Designer

UG20181026O-page 6 © 2021 Microchip Technology Inc.

2.0 FREQUENCY DOMAIN CONFIGURATION (BODE PLOT) (CONTINUED)

Figure 4: PowerSmart™ Digital Control Library Designer Frequency Domain View with Workflow History

Loop tuning is a major step in the design process of a power supply. System optimizations might require to

frequently modify filter settings to solve design tradeoffs.

To simplify the management of optimization iterations, Section (5) of the Frequency Domain View also provides

access to the workflow history of the filter design process. This history table captures filter settings when code is

generated, assuming generated code will be programmed into a device and measurements/bench-tests are

performed.

History items cover:

• ID: continuously incrementing number of history entries

• Time Stamp: date and time of capture event / code generation event

• User Name: user who last updated the filter parameters

• Label: default: (Autosave); can be renamed by user by hitting key F2 on the keyboard

 or right-click an entry to open the context menu selecting ‘Rename’

• Settings: encoded list of settings used

Please note:

Settings can be recalled by Double-Click or selecting an entry and hitting ENTER on the keyboard.

This history only captures the filter configuration. Code generator options are not saved and restored.

3

4

5
6

1

2

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 7

2.1 Controller Selection

After application start the main window is starting in the frequency domain view and controller configuration. All

digital controllers supported by this tool are based on discrete time domain transfer functions, which have been

derived from continuous time domain transfer function prototypes using the bi-linear transform (BLT).

The continuous time domain prototype transfer functions are based on conventional type I, II, III compensation

circuits used in SMPS control systems the industry since the early 1980s. All higher order transfer functions used

by this tool, are mathematically up-scaled versions of the same control approach.

These controllers consist of lead-lag compensators of the n-th order, multiplied with a simple integrator term

incorporating the gain influence over frequency of an additionally introcuced pole at the origin. The only difference

between these transfer functions is the order of the lead-lag compensator term, which may include no pole/zero

pair at all (1st order) or up to n pole/zero pairs (n-th order).

2.2 Why using s-Domain Prototype Filters?

Creating discrete time domain controllers would not necessarily require the deviation of their transfer function from

a continuous time domain prototype filter. However, this deviation path allows to establish relations between

continuous and discrete time domain control systems, which allow us to use the very same, well understood design

procedures and techniques common in the power supply industry. This also includes using tools for both domains

while still being able to consider, incorporate or compensate for the differences between them.

The Digital Control Library Designer window of the PowerSmart™ SDK takes pole and zero frequency locations

to characterize the compensation filter and total feedback loop gain and can therefore directly be applied to system-

level frequency domain models including filters, feedback conditioning circuits and the plant by merging continuous

and discrete time domain blocks.

2.3 Selecting the Right Controller

The selection of the right controller for an application exclusively depends on the power supply plant circuit

characteristics and applied control mode. Based on the knowledge of the frequency domain characteristic of a

specific design, the controller selection mainly comes down to compensating of the power supply plant by

compensating each system pole with a zero in the compensator and each system zero with a pole in the

compensator. This method is basically a linearization approach where the non-linearity of the plant frequency

domain is made linear. By introducing a pole at the origin, the now flat, linear open loop transfer function is rotated

by 45°, turning the system into a 1st order control low-pass filter.

Although this sounds easy and straight forward, the physics of a power supply circuit leaves us with plenty of

system aspects which are not covered by this linearization approach, such as filter resonance frequencies or time

constants of the exchange of charges between components defined by their parasitic parameters. So eventually

a compensator does not result in a truly linear system, but this compensation technique is the fundamental basis

to stabilize a by-default unstable power supply filter circuit.

A comprehensive description of plant circuits and influencing factors is beyond the scope of this user guide.

However, the following, general guidelines may help.

PowerSmart™
Digital Control Library Designer

UG20181026O-page 8 © 2021 Microchip Technology Inc.

The frequency domain design process essentially requires knowledge of the frequency domain characteristic of

the power supply circuit. Once this is known and pole and zero locations have been derived, a controller is chosen

which has at least as many poles and/or zeros as the plant.

Further, it is necessary to keep in mind that a switch-mode power supply circuit is not able to continuously provide

power to the output as the power path between input and output is broken and re-connected in every switching

cycle while continuous output power is only provided by the output capacitor. In fact, a switch-mode power supply

is more like a filtered z-domain system, which cannot respond to transients faster than half of its switching

frequency (z-domain Nyquist-Shannon limit). To prevent fast transients/high frequency noise affects the

performance of the power supply and its feedback loop, a good, high-frequency noise rejection is required. This is

usually achieved by placing an additional pole at the edge of the maximum frequency band (either half of the

switching frequency or half of the sampling frequency, whatever is lower)

PS-DCLD provides compensator filters up to the 6th order by selecting one of the following Controller Type

options:

• 1P1Z: 1st order with integrator and no pole/zero pair

• 2P2Z: 2nd order with integrator and one pole/zero pair

• 3P3Z: 3nd order with integrator and two pole/zero pairs

• 4P4Z: 4nd order with integrator and three pole/zero pairs

• 5P5Z: 5nd order with integrator and four pole/zero pairs

• 6P6Z: 6nd order with integrator and five pole/zero pairs

Every pole and zero location can be set by either moving the respective pole or zero indicator in the Bode plot

using the mouse pointer or edit the frequency in the respective entry boxes below the controller selection.

2.4 Scaling Mode Selection

Each controller design is a tradeoff between performance and accuracy. With increased number space the result

accuracy can be enhanced. Enhanced accuracy, however, requires more CPU cycles for the computation. Luckily,

filter coefficients are getting smaller with increased frequency so that more efficient scaling methods can be used

when CPU load constraints are getting tougher.

To solve these tradeoffs easily and individually for every loop and on system-level, the z-Domain Configuration

Window offers four different number scaling modes for each controller type:

• Single Bit-Shift Scaling

Highest performance is achieved by directly utilizing the fixed-point DSP core of the dsPIC® DSC by scaling all

filter coefficients with the very same scaling factor. The factor scaling is implemented by shifting the number bit

code to the right (divide by power of 2) or left (multiply by power of 2). This scaling method is sufficient for a

wide variety of applications with standard topologies.

• Single Bit-Shift with Output Factor Scaling

Occasionally coefficients with single fixed scalers may be affected by accuracy limitations, which, in the worst

case, could corrupt the convolution process of the digital filter and negatively affect the error integration.

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 9

In this scaling mode one additional factor is added and all coefficients are rescaled to minimize the rounding

error of coefficients.

• Dual Bit-Shift Scaling

The single bit-shifting mode with output factor scaling may come short, when coefficients of filter terms A and

B vary significantly in size. For these conditions the Dual Bit Shift Mode was introduced, which applies two

different scalers, one for A and one for the B term coefficients. The performance impact is very similar to the

Single Bit-Shift with Output Factor Scaling.

• Fast Floating Point Coefficient Scaling

In Fast Floating Point mode each coefficient gets its individual bit-shift scaler to maximize number accuracy.

This number format is different from conventional IEEE 754 floating point numbers. Fast Floating Point

numbers have re-ordered binary encoding to optimize the computation process on fixed-point DSP cores. This

number format is the most accurate but also most intensive in terms of CPU cycles.

Fast Floating Point (ffloat16) Number Encoding

HIGH WORD LOW WORD

SIGN FRACTIONAL SCALER

x xxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

Bit [31] Bit [30:16] Bit [15:0]

Example:

The number 7.965702247619620 needs to be encoded as Fast Floating Point (ffloat16)

number. As the fractional portion of ffloat16 is a signed Q15 fractional number, the available

number range is limited to:

• maximum positive number: (215 − 1) × 2−15 = 0.999969482421875

(= Hexadecimal 0x7FFF)

• maximum negative number: −215 × 2−15 = -1.000000000000000

(= Hexadecimal 0x8000)

Obviously, 7.965… is greater than the maximum specified number and therefore needs to be

scaled into the valid number range. B applying bit-shift scaling of the integer representation of

the fractional number, we perform fast multiplies and divides by powers of 2 which can be

executed in a single CPU cycle. One bit-shift to the right is therefore equivalent to a divide by

2. One bit-shift to the left is equivalent to a multiply by 2.

To scale the number 7.965… into the available range between -1.000… and +0.999… we

need to shift the integer representation of this number three times to the right (divide by 8),

giving us the number 0.995712780952453. This number is now less than 0.999969482421875

and fits into the Q15 number range. Each bit shift performed is stored in the SCALER of the

ffloat16 number and can therefore be decoded correctly later.

PowerSmart™
Digital Control Library Designer

UG20181026O-page 10 © 2021 Microchip Technology Inc.

The recommended process of determining the best scaling mode is to start from single bit-shifting while observing

the coefficient output window below the Bode plot. Should one or more coefficients exceed 0.5% error, it will be

marked in yellow (warning level), if the inaccuracy exceeds 1.0%, it will be marked red (error level).

Should any of these warnings appear, increase the scaling option until all warnings disappear. Observe the timing

diagram (tab Time Domain) on the right, to keep track on the CPU load, execution time and overall timing

alignment.

2.5 Input Data Specification

This section is used to normalize the input data to the computation engine. The input data range needs to meet

the number format of the selected controller. Input data needs to meet the following requirements to prevent gain

mismatches between model and desired control output:

• Maximum bit resolution needs to be scaled using the Total Input Data Length setting

• Static offsets should be compensated using the Feedback Offset Compensation option

Additionally, the Input Data Specification offers three additional options accounting for the physical scale or the

feedback signal:

• Input Signal Gain

Assuming the input data is coming from an analog-to-digital converter (ADC) reading a pre-conditioned analog

signal, the gain of the signal conditioning circuit can be entered here (e.g. reading voltage from a voltage

divider). As a result, the Bode plot graph on the right will show the impact on the frequency response of the

controller (gains < 1 will drop the gain, gains > 1 will increase the gain)

Example 1: Voltage Divider Gain

The output voltage of a power converter is conditioned by voltage divider providing a feedback voltage VFB to

the ADC input, where the upper resistor R1 is 8.2kW and the lower resistor R2 is 1.1kW. The divider ratio

represents the gain G and is calculated using the equation

𝐺𝑉𝐷 =

𝑅2

𝑅1 + 𝑅2
=

1.1𝑘

8.2𝑘 + 1.1𝑘
= 0.1183;

Equation 2-1

Example 2: Shunt Amplifier Gain

The output current of a power converter is sensed across a shunt resistor RS of 10mW. The sense voltage is

amplified by a shunt amplifier IC with an output gain GAMP of 20 V/V without signal offset. At an output

current IOUT of 1A the amplifier would produce a feedback voltage VFB of 200mV.

The gain G is defined as ratio of V/A.

𝐺𝐶𝑆 = 𝑅𝑆 × 𝐺𝐴𝑀𝑃 = 0.01 ×

20𝑉

𝑉
= 0.200;

Equation 2-2

The input gain to enter is 0.200.

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 11

• Input Signal Gain Calculation Tool

PS-DCLD also offers a calculation tool for most common feedback circuits such as voltage dividers, current

sense amplifiers, current sense transformers and digital sources such as input capture modules.

Please note:

The feedback gain derived by using these calculation tools is only used to normalize the feedback loop gain

and does not consider frequency domain characteristics of components.

o Voltage Divider Gain Calculator

Figure 5 shows the voltage divider gain calculator where

the Analog-to-Digital converter reference voltage and

resolution as well as upper and lower resistor value can

be entered. In addition, this calculator offers an

additional option for adding the gain of an operational

amplifier. If no operational amplifier is used, its gain must

be set to ‘1’.

This feedback gain is calculated in VSENSE / VSOURCE

The effective feedback gain is calculated and displayed

at the lower right of this window. This value will be taken

over into the main window by clicking the OK button.

o Shunt Amplifier / Current Sense Amplifier

Figure 6 shows the shunt amplifier gain calculator. This

input mask offers fields for the shunt resistor value and

amplifier gain.

This feedback gain is calculated in [VSENSE / ASOURCE]

Figure 6: Shunt Amplifier Gain Calculator Figure 7: Current Sense Transformer Gain
Calculator

Figure 5: Voltage Divider Gain Calculator

PowerSmart™
Digital Control Library Designer

UG20181026O-page 12 © 2021 Microchip Technology Inc.

o Current Sense Transformer

Figure 7 shows the current sense transformer gain calculator. This input mask offers fields for the winding

ratio of the transformer and the burden resistor used to transform the secondary current into voltage. This

voltage level may be sampled by the ADC or being applied to the input of an analog comparator.

This feedback gain is calculated in VSENSE / ASOURCE

o Digital Source

Figure 8 shows the input mask for digital feedback sources.

This mask supports a wide variety of sources such as input

capture modules, which are often used to measure digital

signals like output frequencies of a V/f converter but also

applies to bare digital values received through

communication interfaces.

The only aspect of interest with any of these sources is the

effective bit resolution of the maximum available range.

Example:

A Voltage-to-Frequency converter is used to measure a

voltage signal on the other side of a galvanic barrier. The

output frequency is transmitted through a digital opto-

coupler and received and measured through an input

capture module. The output frequency range of the V/f

converter can vary between 1 kHz up to 1 MHz

(= 1 ms to 1 µs period)

The input capture clock is running at 50 MHz providing an

effective resolution of 20 ns. The required resolution to be

entered is calculated by dividing the source frequency by the time-base resolution.

In our example, the frequency of interest is the V/f converter output frequency at nominal output voltage:

fV/f = 250 kHz  TV/f = 4 µs; TIC = 20 ns

𝑇𝑉/𝑓

𝑇𝐼𝐶

=
4 µ𝑠

20 𝑛𝑠
= 200 ≈ 7.64 𝑏𝑖𝑡;

To calculate the required gain value, this effective signal resolution must be referenced against the

maximum input resolution, which is represented by the time-base range of the input capture module of 16 bit

(= 65,535).

Hence, the effective feedback gain is

2𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘

2𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝐼𝑛𝑝𝑢𝑡 𝐶𝑎𝑝𝑡𝑢𝑟𝑒
= 2(𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘−𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝐼𝑛𝑝𝑢𝑡 𝐶𝑎𝑝𝑡𝑢𝑟𝑒) = 27.64−16 = 2−8.36 ≈ 0.003

Figure 8: Digital Feedback Source Gain

Calculator

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 13

• Input Signal Gain Compensation (Option Normalize Input Gain)

In case the input data gain is different from 1, this option will automatically increase/decrease the gain of the

controller to compensate for the physical signal gain deviation.

If this option is not selected, gain variations have to be compensated by manually adjusting the Cross-Over

Frequency Of The Pole At The Origin (a.k.a Zero-Pole) to achieve the desired results.

• Compensating Input Data Offsets

o Option Feedback Offset Compensation

This option has been added to auto-correct simple, static signal offsets. As these offset values often need

to be calibrated under specific test or operating conditions (e.g. while converter is off) or may even change

during runtime, this offset value needs to be specified in user code.

By enabling this option, the assembly code generator engine will add the item InputOffset to the

assembly code module. This offset compensation is basically a control reference level shifter which will

automatically add the user-defined offset value InputOffset to the most recent control reference value

ptrControlReference on a cycle-by-cycle basis. Shifting the reference prevents potential gain distortions

between outer and inner loop in cascaded control loop systems, such as average-current mode control, as

well as accidental control loop inversions by feeding negative numbers into the unsigned number interface

of the computation.

The optional input offset value needs to be a signed 16-bit integer number ranging between

-32,768 to +32,767.

o Signal Rectification Control

This option has been added to better support the control of bi-directional power supplies (2-Quadrant

supplies). In these types of converters, the zero point of the current feedback is often lifted to half of the

ADC range. Positive currents are represented by numbers greater than the zero-offset while negative

currents are represented by numbers less than the zero-offset value. The catch with this signal

conditioning is, that negative currents become indirect proportionally represented, which bares the risk of

accidentally inverting the inverting feedback loop resulting in a non-inverting feedback loop. In this

condition the power converter would go unstable instantly.

While the converter is operating in one, defined direction, it might still be necessary to interpret numbers

less than the zero offset as negative currents to allow the power supply to operate properly at/near zero

load. Only when the power transfer is reversed, the current feedback polarity needs to be inverted

intentionally to provide the expected, direct proportional representation of the current feedback to the

control loop.

By selecting the option Enable Signal Rectification Control adds a control bit to the status word of the

NPNZ16b_t data structure allowing to turn on/off thFe signal rectification manually in user code.

PowerSmart™
Digital Control Library Designer

UG20181026O-page 14 © 2021 Microchip Technology Inc.

2.6 Compensation Filter Parameters

• Sampling Frequency

Coefficients of z-domain filters need to incorporate the time-information between two samples to be able to

‘reconstruct’ the analog signal and give the accurate, desired response. Therefore, the sampling period TS is

the most vital and sensitive parameter of the digital compensation filter.

This parameter is defined by entering the sampling frequency in Hz here.

• Pole & Zero Locations

o Cross-Over Frequency of Pole at Origin (Zero-Pole Frequency ZPF)

The Pole At The Origin is the major parameter which distinguishes the power supply compensator from a

normal lead-lag compensator. It is this parameter which eventually introduces a steady falling gain slope of

-20 dB/dec over frequency, turning the power supply into an active low-pass filter with good regulation.

As this pole is indeed located in the origin of the frequency domain, as its name suggests, its effect on the

frequency domain is adjusted by placing the cross-over frequency location (point where gain crosses 0 dB)

at a specific point rather than the pole itself.

By increasing the Cross-Over Frequency of the Pole At The Origin (Zero-Pole Frequency = ZPF), the

absolute gain level of the feedback loop is increased without changing/affecting any of the other pole and

zero locations.

By decreasing the ZPF, the absolute gain level of the feedback loop is decreased

Lag Compensator Pole & Zero Locations

As explained under 2.3 Selecting the Right Controller, pole and zero locations of the compensator need to

be matched with pole and zero locations of the power plant. However, beyond this very basic

compensation approach, some pole & zero locations may be repositioned slightly from their strict

compensation locations to improve the frequency response of the power supply in accordance to design

criteria and application requirements.

Enter the derived pole & zero locations in the fields provided.

Please note:

In a digital controller, the sampling frequency determines the maximum continuous time domain (s-plane)

frequency range, which can be mapped into the valid range of the discrete time domain (z-plane), limited

by the Nyquist-Shannon limit at half of the sampling frequency. Beyond this point the z-domain filter stops

working as the incoming data becomes to fractured to allow a proper signal representation of the real,

analog signal.

Any frequency entered should not exceed the Nyquist-Shannon limit.

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 15

3.0 TIME DOMAIN WINDOW

Figure 9: Code Generator Configuration and Timing Diagram

TABLE 3: TIMING DIAGRAM OVERVIEW DESCRIPTION

No Description

1 Code generator configuration option catalog

2 Timing diagram of control loop execution vs. SMPS switching waveform

3 Relative CPU Load bar

4 Timing calculation output and target device parameter configuration

A robust control loop needs to be executed with a fixed frequency and minimum time delay between an ADC

sampling point and the related controller response write-back. Considering the time required to execute the control

loop and its repetition rate, each control loop consumes a certain amount of the total available CPU bandwidth.

Solving the trade-off between available CPU resources, control features and control accuracy is one of the major

design objectives.

In this context a proper timing analysis is vital to prevent timing conflicts and CPU load bottlenecks which will both

inevitably bare the risk of major system failures. The chart provided shows the PWM signal (main PWM pulse

only), ADC trigger event and ADC conversion delay, control loop execution time, controller data read event and

controller response write-back event.

• Time Domain Chart Configuration

1
2

3

4

PowerSmart™
Digital Control Library Designer

UG20181026O-page 16 © 2021 Microchip Technology Inc.

The parameters listed in Section 4 of the Time Domain view can be used to adjust the chart to represent

specific application characteristics. These parameters are:

• CPU Clock: Sets the effective CPU core clock / execution clock

 this parameter is used to calculate the generated control code

• PWM Frequency: Set up the time scale of the chart and set the frequency of the

 displayed main PWM signal

• Duty Cycle: Sets the pulse-width of the displayed main PWM signal

• ADC Latency: Sets the pulse width of the ADC conversion time indicator

• Control Interrupt Latency: Sets the time delay from trigger source to start of the

 control loop execution

• User Trigger Delay: This generic delay is usually set in software to account for signal

 chain delays such as propagation delays of MOSFET drivers. This

 signal delays require a placement optimization of the ADC trigger.

 As both, control loop execution and ADC trigger are in most cases

 controlled by the PWM time base, these delays can be added to the

 timing view to gain a better representation of the real runtime relations.

• Time Domain Chart Output Table

The PS-DCLD engine is calculating various timing relations depending on controller type and options selected.

The calculation results are shown in Section 4 of the Time Domain view

These parameters are:

• Total Instruction Cycles: Number of instruction cycles required by this control loop

 (from start to end or npnz_Update controller function)

• Instruction Cycles until Data Read Number of instruction cycles required from first instruction

 up to until the DATA READ instruction is executed

• Instruction Cycles until Response Number of instruction cycles required from first instruction

 up to until the response writeback instruction is executed

• Instruction Cycles until Response Number of instruction cycles required from first instruction

 up to until the response writeback instruction is executed

• Relative CPU Load: This value represents the relative CPU load in [%] consumed by

 executing the configured control loop

• Total Execution Period: Total execution time of one control step determined by the delay

 from ADC sampling to Exit of control routine

• Response Delay: Total Zero-Order Hold (ZOH) of one control step determined by

 the time delay from ADC sampling to control loop data write back

 event

3.1 Controller Block Diagram Window

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 17

Figure 10: Block Diagram Overview

TABLE 4: BLOCK DIAGRAM OVERVIEW DESCRIPTION

No Description

1 Systematic controller block diagram

2 Controller block diagram with discrete time domain signal waveforms

3 Generic format of s- and z- domain compensator transfer function equations

 Firmware module implementation block diagram and flow-chart

The block diagram overview shows four different block diagrams:

• NPNZ Controller Block

• Compensator Block (core block of NPNZ Controller Block)

• s- to z-Domain transfer function

• Compensator processing workflow block diagram

The following sections provide more information about the firmware integration of the generated controller block

and intended use cases.

1

2

3

PowerSmart™
Digital Control Library Designer

UG20181026O-page 18 © 2021 Microchip Technology Inc.

• Controller Module Firmware Integration

PS-DCLD generates code modules providing a “black box” controller with one, unified Application Programming

Interface (API). The look-and-feel of the generated code blocks is like working with hardware peripherals on any

MCU where the user sets the configuration and then enables the module. Once these code modules have been

added to a project and the user configuration has been added to the firmware, user settings will remain valid even

if controller options change, filter settings are modified or even compensators of different order or different number

scaling types are selected.

The following section gives a high-level overview about the various settings made available by the API and shows

which one of them are managed by the control code itself and which require user configuration.

3.2 Block Diagram

The generated control code library is a generic block with defined input and output ports.

Figure 11: NPNZ16b_t Controller Object Block Diagram

The control object API offers DATA PATH (BLUE), FUNCTION CALL PORTS (RED) and STATUS & CONTROL

PORTS (GREEN). Some of these ports can be enabled/disabled/added/removed by selecting their option in the

Code Generator Configuration. These options are described in chapter 5.0 CODE GENERATOR OUTPUT

WINDOW

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 19

4.0 THE NPNZ16B_T DATA STRUCTURE

The generic NPNZ data structure introduces a data type called NPNZ16_t, which covers all properties of all

supported controller types. In addition, the code generator generates functions for initialization, reset and execution

of the controller object.

4.1 NPNZ16b_t Object Configuration

As shown by Figure 11 above, the NPNZ object manages data paths between coefficient, input data and history

data arrays internally. These ‘connections’ are initialized by the controller initialization routine, generated by the

Assembly and C-Source code generator. However, these are just a fraction of the required configurations required

to operate the NPNZ controller in user code. Users must specify the following data paths and related optional

parameters before the control loop can be enabled:

TABLE 5: NPNZ16b_t PROPERTIES CONFIGURATION

Property Description User
Config.

Status & Control
Status Controller status word with status and control bits

enable Bit [15]: Controller Enable/Disable Control Bit
1 = Execution of the compensation filter is enabled
0 = Execution of the controller is bypassed



invert_input(1) Bit [14]: Data Input Rectification Control Bit
1 = Error input will be inverted
0 = Error input will not be inverted



swap_source(1) Bit [13]: Data Input Source Control Bit
1 = Controller reads input data from ptrAltSource

0 = Controller reads input data from ptrSource



swap_target(1) Bit [12]: Data Output Target Control Bit
1 = Controller writes output data to ptrAltTarget

0 = Controller writes output data to ptrTarget



agc_enable(1) Bit [11]: Adaptive Gain Control Algorithm Execution Control Bit
1 = AGC factor is multiplied with feedback coefficients
0 = AGC factor is not multiplied with feedback coefficients



 Bit [10:2]: (reserved)
upper_saturation_event(1) Bit [1]: Output Clamping Maximum Status

1 = Control output is greater than MaxOutput (got clamped)

0 = Control output is less than MaxOutput

lower_saturation_event(1) Bit [0]: Output Clamping Minimum Status
1 = Control output is less than MinOutput (got clamped)

0 = Control output is greater than MinOutput

PowerSmart™
Digital Control Library Designer

UG20181026O-page 20 © 2021 Microchip Technology Inc.

TABLE 5: NPNZ16b_t PROPERTIES CONFIGURATION (CONTINUED)

Property Description User
Config.

I/O Data Interface (Ports)
Source Primary data input register/variable

ptrAddress Pointer to data input register/variable 
NormScaler Input signal normalization scaler (integer) 
NormFactor Input signal normalization factor (fractional) 
Offset Input signal offset 

AltSource(1) Alternate data input register/variable

ptrAddress Pointer to data input register/variable 
NormScaler Input signal normalization scaler (integer) 
NormFactor Input signal normalization factor (fractional) 
Offset Input signal offset 

Target Primary data output register/variable
ptrAddress Pointer to data input register/variable 
NormScaler Output signal/value normalization scaler (integer) 
NormFactor Output signal/value normalization factor (fractional) 
Offset Output signal/value offset 

AltTarget(1) Alternate data output register/variable
ptrAddress Pointer to data input register/variable 
NormScaler Output signal/value normalization scaler (integer) 
NormFactor Output signal/value normalization factor (fractional) 
Offset Output signal/value offset 

ptrControlReference Pointer to control reference variable 

Compensation Filter Data Objects
ptrACoefficients Pointer to compensation filter A-coefficient array 

ptrBCoefficients Pointer to compensation filter B-coefficient array 

ptrControlHistory Pointer to compensation filter control output history array 

ptrErrorHistory Pointer to compensation filter error input history array 

ACoefficientsArraySize Size of the A coefficients array in X-space 
BCoefficientsArraySize Size of the B coefficients array in X-space 
ControlHistoryArraySize Size of the control history array in Y-space 
ErrorHistoryArraySize Size of the error history array in Y-space 
normPreShift Data input normalization scaler 

normPostShiftA Data output normalization scaler A 

normPostShiftB Data output normalization scaler B 

normPostScaler Data output normalization factor 

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 21

TABLE 5: NPNZ16b_t PROPERTIES CONFIGURATION (CONTINUED)

Feedback Gain Control

AgcScaler(1) Bit-shift scaler of Adaptive Gain Modulation factor 
AgcFactor(1) Q15 value of Adaptive Gain Modulation factor 
AgcMedian(1) Q15 value of Adaptive Gain Modulation nominal

operating point


ptrAgcObserverFunction(1) Function Pointer to Observer update function 

Output Limits
MinOutput(1) Control output minimum value 
MaxOutput(1) Control output maximum value 
AltMinOutput(1) Alternate Control output minimum value 
AltMaxOutput(1) Alternate Control output maximum value 

ADC Trigger Control

ptrADCTriggerARegister Pointer to ADC trigger register of primary ADC trigger 
ADCTriggerAOffset Constant primary ADC trigger delay value 
ptrADCTriggerBRegister Pointer to ADC trigger register of secondary ADC

trigger


ADCTriggerBOffset Constant secondary ADC trigger delay value 

Data Provider Sources
ptrDataProviderControlInput(1) Pointer to user variable receiving most recent input

value


ptrDataProviderControlInputComp(1) Pointer to user variable receiving most recent input
value


ptrDataProviderControlError(1) Pointer to user variable receiving most recent error 
ptrDataProviderControlOutput(1) Pointer to user variable receiving most recent control

output


User Extension Hooks

ptrExtHookStartFunction(1) Pointer to user-defined function 
ExtHookStartFunctionParam(1) Pointer to one 16-bit wide user-function parameter 
ptrExtHookSourceFunction(1) Pointer to user-defined function 
ExtHookSourceFunctionParam(1) Pointer to one 16-bit wide user-function parameter 
ptrExtHookPreAntiWindupFunction(1) Pointer to user-defined function 
ExtHookPreAntiWindupFunctionParam(1) Pointer to one 16-bit wide user-function parameter 
ptrExtHookTargetFunction(1) Pointer to user-defined function 
ExtHookTargetFunctionParam(1) Pointer to one 16-bit wide user-function parameter 
ptrExtHookStopFunction(1) Pointer to user-defined function 
ExtHookStopFunctionParam(1) Pointer to one 16-bit wide user-function parameter 
ptrExtHookEndFunction(1) Pointer to user-defined function 
ExtHookEndFunctionParam(1) Pointer to one 16-bit wide user-function parameter 

PowerSmart™
Digital Control Library Designer

UG20181026O-page 22 © 2021 Microchip Technology Inc.

TABLE 5: NPNZ16b_t PROPERTIES CONFIGURATION (CONTINUED)

User Data Space / Advanced Feature Parameters

usrParam0(1) generic 16-bit wide, user-defined parameter #1 
usrParam1(1) generic 16-bit wide, user-defined parameter #2 
usrParam2(1) generic 16-bit wide, user-defined parameter #3 
usrParam3(1) generic 16-bit wide, user-defined parameter #4 
usrParam4(1) generic 16-bit wide, user-defined parameter #1 
usrParam5(1) generic 16-bit wide, user-defined parameter #2 
usrParam6(1) generic 16-bit wide, user-defined parameter #3 
usrParam7(1) generic 16-bit wide, user-defined parameter #4 

(1): This is an optional property which will only be available when the related controller option is

selected. Parameters for selected options must be configured in user code

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 23

TABLE 6: NPNZ DEFAULT FUNCTIONS

The code generator also generates additional functions for extended controller block control.

Function Parameters Description

npnz_Init Controller Initialization Routine
Calling this routine will configure all controller properties in TABLE

5 which are marked with the symbol 

 NPNZ16b_t* controller NPNZ controller data structure holding system and user
configuration

npnz_Reset Control History Reset
This routine is clearing all existing error and control output history
values within the respective history arrays. All values will be set to
zero.

 NPNZ16b_t* controller NPNZ controller data structure holding system and user
configuration

npnz_Precharge Control History Precharge
This routine is loading user defined error and control output history
values into their respective history array.

 NPNZ16b_t* controller NPNZ controller data structure holding system and user
configuration

 fractional ctrl_input signed 16-bit number representing a static error value which
should be loaded into the error history

 fractional ctrl_input signed 16-bit number representing a static control output which
should be loaded into the control output history

npnz_Update Execute Control Loop
This routine is calling the NPNZ controller. Each function call will
execute one single control step. This routine has to be called
frequently to execute continuous control (e.g. from a PWM
synchronized ADC interrupt service routine or PWM interrupt)

Once configured, the controller module is fully self-sustained and
does not need further instructions. However, to take advantage of
the digital control layer and the various options provided by PS-
DCLD, controller runtime manipulation should be performed from a
higher control layer (e.g. firmware state machine)

 NPNZ16b_t* controller NPNZ controller data structure holding system and user
configuration

PowerSmart™
Digital Control Library Designer

UG20181026O-page 24 © 2021 Microchip Technology Inc.

TABLE 6: NPNZ DEFAULT FUNCTIONS (CONTINUED)

Function Parameters Description

npnz_PTermUpdate(1) Execute P-Term Control Loop
This routine is optional and will only be available when the
advanced code option “Use P-Term Controller for Plant
Measurements” is enabled.

Please note:
This variant of an integrator-free, proportional controller is used for
plant measurement only. It is highly unstable and should never be
used for regulating a power supply under normal operation.

The code generator will generate a control loop using the very
same code generation options selected for the main control loop,
such as context management, basic feature extensions,
automated data interfaces, data provider sources and anti-windup
settings. Hence, this control loop can directly replace the main
control loop without affecting other software instances.

 NPNZ16b_t* controller NPNZ controller data structure holding system and user
configuration

(1): This is an optional property which will only be available when the related controller option is

selected. Parameters for selected options must be configured in user code

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 25

5.0 CODE GENERATOR OUTPUT WINDOW

Figure 12: Code Generator Output View

TABLE 7: CODE GENERATOR OUTPUT VIEW DESCRIPTION

No Description

1 Control loop / Code generator configuration option catalog

2 Source code output tab controls (access to output windows of assembly and c-code modules)

3 Source code output window

The built-in code generator of PS-DCLD updates the generated source code in real time while the user makes

changes to configurations. The generated code is displayed in individual, separated output windows for assembly

and C-code modules, where the code can be reviewed and edited12.

The Source Code View covers multiple sub windows for every generated code module. The generated control

library source code provides four different files:

1 changes made by the user may get overwritten by the generator without warning (see Code Generator Settings)
2 code editor has no compiler support

1

2

3

PowerSmart™
Digital Control Library Designer

UG20181026O-page 26 © 2021 Microchip Technology Inc.

• Optimized Assembly Code

All runtime functions are generated as optimized assembly routines. These routines read data from and write

data to a data structure (NPNZ16b_t), which holds all parameters and pointers to Special Function Registers

(SFRs) and user defined variables used by the library. This data is loaded into the data structure by the C-

domain initialization function. Depending on code generator options selected, additional information will be

written to the data structure, from which C-domain application code can gain access (e.g. status bits, most

recent calculation results, etc.)

• C-Source File

The C-source file contains the static default set of filter coefficients, number scaling constants and the data

structure initialization function of this individual controller.

PLEASE NOTE

The C source initialization routine only initializes the digital filter coefficients and number scaling settings.

Controller/system-specific parameters like anti-windup thresholds, source and target registers, ADC trigger

registers and offsets must be set in user code.

Please review chapter 4.1 NPNZ16b_t Object Configuration for more information.

• C-Header File

The C-header file holds all public variable and function declarations of this individual controller, making them

accessible from throughout the user firmware.

• Library C-Header File

The library header contains all generic declarations of the NPNZ16b_t data structure, status bits and related

global defines. This file only needs be added once per project. All declarations will be used by all individually

configured controllers.

• Library Include File (the usage of this file is optional)

The library include file contains Assembly references to the generic declarations of the NPNZ16b_t data

structure, status bits and related global defines defined in the Library C Header file. This file only needs be

added once per project.

By default, the NPNZ16b_t references declaration listed in this file are generated into the upper section of the

Assembly library file. In some applications, however, users might want to write their own, custom code

modules requiring access to the NPNZ16b_t object data structure. To ease code implementation and

management in these cases, PS-DCLD can now create an additional include file npnz16b.inc, which can be

included in custom code modules.

User do have the choice if the

generated assembly routine should

contain the data structure references

in the same file or include the

contents of the npnz16b.inc file.

Figure 13: Include Assembly Include File Option

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 27

• Controller Configuration Code Example Template

The PS-DCLD code generator creates a configuration code example template in parallel to the library files

listed above showing how the recently enabled features of the generated controller are initialized and

configured in user code (see Figure 14.

Please note:

This code template is not exported by PS-DCLD and is only provided as guiding example for the user code

integration of the NPNZ16b control object. User can manually copy this template or parts of it over into the

user project as needed.

Figure 14: Configuration Code Template

Template format:

The code template covers header inclusions, a configuration function and an interrupt service routine in which

the control loop is called. Each parameter is represented by a placeholder lick shown in the following example:

my_loop.Ports.Source.Offset = <signed int>; // Primary feedback signal offset

The placeholder <signed int> needs to be replaced by user code/parameter.

PowerSmart™
Digital Control Library Designer

UG20181026O-page 28 © 2021 Microchip Technology Inc.

Option “Include unused settings”:

The code template by default only covers the most recently selected features. All parameters/instructions related

to disabled code generator options are excluded and removed from the code example. However, if a generic

NPNZ16b compliant driver code is written, it might be desired to also include features which are currently not

enabled but may be in other applications.

By enabling the option “Include unused settings” a complete configuration code will be generated, including

the currently disabled features and parameters.

Copy To Clipboard:

The Copy To Clipboard feature offers two options:

• Copy entire template contents into Clipboard

If no text is selected in the window, by clicking the Copy To Clipboard button on the upper right of the

window, the contents of the entire code template will be copied to the Clipboard from where users can

paste the contents to the user code.

• Copy selected sections only

If a section of the text is selected, by clicking the Copy To Clipboard button on the upper right of the

window, the most recent selection of the code template will be copied to the Clipboard from where users

can paste the contents to the user code.

Please note:

This function will ignore spaces, tabs and line ends. If the selection does not contain any reasonable

text, the entire file contents will get copied into the clipboard.

In any case, the common hotkey Ctrl + key ‘C’ is active and can also be used to copy template contents from

PS-DCLD to user code.

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 29

6.0 CODE GENERATOR OPTIONS

Figure 15: Code Generator Options

The code generator offers several options helping to tailor the
way code is implemented in the firmware, add/remove
required features and optimize the overall timing to
application specific needs.

The available code generation options are grouped in six
major categories:

• File & Function Label
customize names of objects, variables and functions
in multi-loop systems allowing multiple controllers to
coexist in firmware

• Context Management / Save/Restore Context
optimize interrupt latency

• Basic Feature Extensions
add/remove standard features

• Automated Data Interface
reassign/swap inputs and outputs during runtime

• Data Provider Sources
automate distributing of data across firmware

• Anti-Windup Limiter Configuration
add/adjust controller output limits

Options, like the Context Management or some of the Basic
Feature Extensions, allow designers to optimize the
generated code library for different dsPIC® device
generations or to account for XC16 compiler features or
custom device configurations used. Other options like the
Basic Feature Extensions, Automated Data Interface, Data
Provider Sources and Anti-Windup are generic and can be
applied across all devices as needed/desired.

The following sections provide more detailed information on
individual options and information of possible use cases.

PowerSmart™
Digital Control Library Designer

UG20181026O-page 30 © 2021 Microchip Technology Inc.

6.1 File & Function Label

The control loop object, related variables, function call labels and file names are using the unified Control Loop

Label specified here. PS-DCLD initially provides a default label for the controller name and variable declarations

when a new configuration is created. However, these labels may not be unique or may not reflect the function the

control loop serves within the application.

Therefore, it is recommended to customize this label to improve readability and compatibility with user application

code.

PLEASE NOTE

User-defined labels are mandatory when building multi-loop systems to prevent naming conflicts between file

names, variables, function calls and data objects in user code

Figure 16: Assigning user-specific names for variables and objects

Please observe the C-source file generator output to see how name prefixes change.

6.2 Save/Restore Context

High speed control systems in SMPS are purely interrupt driven, triggered by PWM, ADC or timer peripherals

several 100 thousand times per second. Thus, interrupt latency is a major performance aspect. Optimizing interrupt

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 31

latency mainly depends on the amount of context information which needs to be saved and restored by the CPU

when an interrupt occurs. As context management vary over dsPIC® device generations and compiler versions,

these options allow the manual management of context registers used by the controller. For example, dsPIC33FJ

DSCs only have one set of shadow registers where working registers (WREGs) need to be pushed to and popped

from RAM individually. dsPIC33EP, in comparison, offer additional sets of alternate working registers where the

recent context can be swapped out in a single CPU cycle. dsPIC33CH and dsPIC33CK have even further extended

features including DSP accumulators and the core configuration register.

Depending on basic device configurations, such as #pragma config CTXTn configuration bits, and compiler

features used, such as interrupt service routine attributes context or naked, the need for saving and restoring

context information can be reduced or turned off entirely. By selecting specific options from this option list, code

for saving and restoring will be added/removed from the generated assembly code file.

PLEASE NOTE

All these settings need to be configured individually using dedicated SFRs and configuration bits. These

configuration steps are not covered by this code generator.

Please refer to the specific device data sheet and available code examples for details on how to configure your

individually generated code module.

• Shadow Registers

covering working registers WREG0 to WREG3 only. These registers usually hold function parameters like the

start address of the NPNZ16b_t data structure, intermediate results of calculation steps and pointers to

memory addresses to access data in the NPNZ16b_t data structure and related settings.

• MAC Working Registers

covering working registers WREG4 through WREG10 used for the filter computation.

• Accumulators

The generated controller library will always start from a cleared accumulator and leave the result in the

accumulator after the filter computation. The control loop therefore will not be affected by other code modules

changing the contents the accumulators. In return, however, control libraries will inevitably override contents of

one or both accumulators.

If the DSP core is used by other application code modules which rely on keeping the contents of the DSP

accumulators alive, it is necessary to save DSP accumulator contents before and restore the contents after the

loop filter computation by enabling Save/Restore Accumulators options.

Please note:

The usage of accumulators depends on the controller type and scaling mode selected. Accumulator

save/restore options will only be available for accumulators used by the generated code.

• CPU and DSP Core Status Register (SR)

The core status register may hold information about active calculation status bits and may therefore be

affected by computations run by the control library. If any additional application code module may rely on this

information, this register needs to be saved before and restored after the control code is executed. The

generated control code iteself does not rely on specific contents of the core status register.

PowerSmart™
Digital Control Library Designer

UG20181026O-page 32 © 2021 Microchip Technology Inc.

• CPU and DSP Core Configuration Register (CORCON)

The control library computation requires a specific DSP configuration to run the control code most efficiently. If

the DSP is used by any other application code module, which may use a different core configuration, this

register needs to be saved, changed and restored.

Please note:

When the core configuration register is used with different settings by multiple application code modules and

this register is saved and restored, please also enable option Add Core Configuration in 6.3 Basic Feature

Extensions.

If no other application code uses the DSP, the core can be configured only once during device startup and this

context management option can be turned off.

6.3 Basic Feature Extensions

This section can be used to add specific, generic features to the control code, which will be embedded in the

assembly code for most efficient execution.

• Add Core Configuration (CORCON)

This option may need to be selected if other application code modules are using the DSP with different

configurations (see 6.2 Save/Restore Context, CPU and DSP Core Configuration Register).

Please note:

If the DSP is only used by the control loop libraries or the default DSP configuration can be shared across the

entire application, it is recommended to configure the core in a separated initialization routine executed during

startup rather than changing the contents of the core configuration in every control loop execution cycle.

• Add Enable/Disable Switch

When enabled, this option will add a control bit to the status word of the NPNZ16b_t data structure used to

enable and disable the execution of the controller code.

This enable bit will be checked before every execution of the controller update library function. When disabled,

the control code will be bypassed, and no data will be read nor written. When disabled, the histories will be

frozen to their latest state, the last control output will remain as a constant, no ADC buffer reads and no output

anti-windup (if selected) will be performed.

Please Note:

When this option is selected, the controller needs to be manually turned on (enabled) in user code by setting

the control bit status.enable = 1.

• Always read form source when disabled

As stated above, by adding the Enable/Disable feature and the controller is in a disabled state, the control

code is bypassed, and no reads of the source register will be performed by default. However, if continuous

sampling of the source is required even if the controller is turned off, this additional option will enforce reading

the source register in off state while still bypassing the controller code.

This feature is most useful in conjunction with enabled Data Provider Sources (see below).

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 33

• Add Input Normalization

dsPIC33FJ, dsPIC33EP, dsPIC33CH and dsPIC33CK ADC converters offer different data format options.

Further, data format may be different when multiple compensators are coupled in multi-loop systems. To deal

with these differences in number resolution, the input data may or may not have to be normalized during the

execution of the control loop code.

Please read the specific device data sheet for details on ADC converter data format configurations for more

details.

• Add ADC Trigger Placement

Control loops, which depend on a precise ADC trigger point which needs to be synchronized to varying duty

cycles, periods or phase shifts, will need the ADC trigger to be repositioned with the control output. The

NPNZ16b controller supports up to two independent ADC triggers named A and B.

By selecting this option, the ADC trigger is placed automatically at 50% of the value of the most recent control

output computation. Referencing to this trigger point, users can define a static offset from this relative trigger

placement by using the ADCTriggerAOffset resp. ADCTriggerBOffset in the NPNZ16b_t data structure.

6.4 Automated Data Interfaces

This option has been designed to better support complex, non-standard control tasks such as bi-directional

control or the PWM output management of complex topologies like interleaved LLC resonant converters with

synchronous rectification. These are only two examples of a variety of use-cases where the runtime

management of multiple sources and targets is required.

• Add Alternate Input Source

By selecting this option, an additional control bits swap_source is added to the NPNZ16b_t data structure

status word, allowing to switch between two defined sources ptrSource and ptrAltSource on the fly.

Whichever source is active will become the recent control input. The data path of both sources is identical,

passing through offset compensation and negation (if selected) ending with the error calculation before being

pushed into the error history.

Each port is of type struct NPNZ_PORT_s, which defines pointer to the source, scaling factors and signal

offset of each channel.

• Add Alternate Output Target

By selecting this option, an additional control bits swap_target is added to the NPNZ16b_t data structure

status word, allowing to switch between two defined targets ptrTarget and ptrAltTarget on the fly.

Whichever target is active will become the recent control output. The data path of both targets is identical,

passing through the anti-windup block before being pushed to the target register or variable.

Each port is of type struct NPNZ_PORT_s, which defines pointer to the target, scaling factors and signal

offset of each channel.

Please note:

In case of switching between output targets, the anti-windup thresholds (if enabled) will also be swapped

from MaxOutput/MinOutput to AltMaxOutput/AltMinOutput simultaneously.

PowerSmart™
Digital Control Library Designer

UG20181026O-page 34 © 2021 Microchip Technology Inc.

When the swap_target control bit is used to switch from one port to another, the “abandoned” port is

neither reset nor any other action is performed. In specific use cases this may not be desired. If, for

example, both targets are individual PWM generators, the original target will keep running in the last state

it was in when the swap was performed.

• Mirrored Control Output Option:

By selecting special option Mirror control output on both targets, control bit swap_target as well as alternate

anti-windup thresholds AltMin and AltMax are disabled and the most recent control output value is written to

both targets simultaneously. In case this option is used to write new timing values to PWM modules with

immediate update capabilities, please be aware that there is 2 instruction cycle delay between the two write

events.

Example: At 100 MHz CPU frequency this is the equivalent of 20ns delay between two writeback events.

6.5 Data Provider Sources

These options have been added to allow other application code modules to track and monitor data only

accessed by the control loop and which will either not be accessible from external code or would have to be read

twice, such as voltage or current information. Instead of reading the ADC registers again, the control loop can be

configured to push the most recent values automatically to user-defined variables during execution of the control

code.

The control code configuration offers three data provider options:

• Most recent, raw control input (e.g. raw data read from an ADC result buffer register)

• Most recent, compensated control input (data value after subtracted user-specified value offset)

• Most recent error (result of the ‘digital error amplifier’, input value to compensation filter

• Most recent control output (control output after anti-windup check & override)

These three data sources can be enabled individually. Their data receiver target needs to be configured by

declaring a pointer to a user defined, global variable in the NPNZ16b_t data structure

Example:

A single controller has been created to regulate the output of a power converter in voltage mode. The firmware

requires access to the most output voltage for fault handling and to send the most recent value over a

communication interface. The ADC trigger for the voltage loop analog input is triggered by the PWM module. The

controller is called from the ADC interrupt service routine (ISR) of this analog input. To keep the total interrupt

time as low as possible, it is desired to let the control loop collect and distribute the output voltage information

instead of reading the ADC buffer register again.

This can be accomplished by following these steps:

• Create a global user-defined variable for the output voltage in user code (e.g. my_vout)

• Enable option Data Provider Sources → Push Most Recent Control Input

• Assign the user variable my_vout as target for the newly added data provider channel by adding the

following code line in user code:

 my_loop.Ports.Source.ptrAddress = &my_vout;

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 35

Please Note:

This pointer assignment needs to be executed before the controller update routine is called for the first

time or an address error trap will occur.

• Optional:

If the controller also uses the Enable/Disable feature but the output voltage should be sampled

continuously, even if the control loop is not active, enable option

Basic Feature Extensions → Always read form source when disabled

As soon as the ADC is triggered and the control loop is called, variable my_vout will automatically be updated by

the control loop in the background.

6.6 Anti-Windup

Digital controllers can clamp the control output to user defined thresholds by overwriting the most recent

computation result with user defined limits in case its greater than a user-defined maximum or less than a user

defined minimum. When using number clamping, the control history will also be clamped at the defined threshold

value without saturation effects known from analog control systems. When a digital controller with proper anti-

windup clamping is used and the control loop reaches output limits (minimum or maximum), it will be clamped

there. When the system recovers, the control loop will start to respond immediately and without desaturation delay.

• Limit Control Loop Output to Positive Numbers

This option defines the number range which can be passed through the Anti-Windup Limiter of the Assembly

control library.

If this option is disabled (default), the Anti-Windup Limiter accepts signed 16-bit wide numbers, ranging from -

32,768 to +32,767 (representing a fractional number range of -1.0 to +0.999969481490524).

If this option is enabled, the Anti-Windup Limiter accepts unsigned 16-bit wide numbers, ranging from

0 to +65,535 (representing a fractional number range of 0.0 to + 0.999984740978103).

This option solves the limitation in number space when the control output is directly written to any PWM timing

register such as the duty cycle or period, while the high-resolution mode of the PWM module of dsPIC33CK and

dsPIC33CH devices is enabled at switching frequencies below 122 kHz. By selecting the unsigned output

number range, the minimum supported switching frequency can be lowered to the following values:

• dsPIC33FJ/dsPIC33EP GS Devices, High Resolution Mode Enabled: 14.7 kHz @ 1.04 ns Resolution

• dsPIC33FJ/dsPIC33EP GS Devices, High Resolution Mode Disabled: 1.83 kHz @ 8.32 ns Resolution

• dsPIC33CK/dsPIC33CH MP Devices, High Resolution Mode Enabled: 61.0 kHz @ 250 ps Resolution

• dsPIC33CK/dsPIC33CH MP Devices, High Resolution Mode Disabled: 7.63 kHz @ 2.00 ns Resolution

Please refer to the device data sheet to learn more about the influence of source clock domains and about PWM

resolution limits of dedicated dsPIC33 MC motor control devices.

PLEASE NOTE

PowerSmart™
Digital Control Library Designer

UG20181026O-page 36 © 2021 Microchip Technology Inc.

If the unsigned Anti-Windup Limit option is enabled, make sure the DSP is configured for normal 1.31

saturation only (register CORCON, bit #4 ACCSAT = 0) and accumulator saturation is enabled for accumulator A

and B (register CORCON, bit #7 SATA = 1 and bit #6 SATB = 1).

• Clamp Control Output Maximum

The control output will be monitored and clamped to a user defined, maximum value when exceeded.

o Generate Upper Saturation Status Flag Bit

When enabled, and the control output gets overwritten by the defined maximum value, a status bit will be

set within the status word of the controller to allow external application code modules to detect the

saturation condition and respond to it accordingly. This status bit is set and cleared automatically by the

controller.

• Clamp Control Output Minimum

The control output will be monitored and clamped to a user-defined, minimum value when underrun.

o Generate Lower Saturation Status Flag Bit

When enabled, and the control output gets overwritten by the defined minimum value, a status bit will be

set within the status word of the controller to allow external application code modules to detect the

saturation condition and respond to it accordingly. This status bit is set and cleared automatically by the

controller.

o Force Values below Minimum Threshold to Zero

When enabled, the control output value will be forced to zero when smaller than the defined minimum

threshold. This forces a defined minimum output value and de facto disables (zero’s) the control output

when lower.

Application Example:

When used for control outputs directly written to PWM timing registers, this feature allows to define a

minimum pulse-width which are sufficiently long to recharge bootstrap circuits or get though propagation

delays of FET drivers and rise- and fall times of power switches while also supporting cycle-skipping

modes when no power should be delivered to the converter output.

• Enable Limit Debouncing (experimental)

The basic implementation of limiting the control output as described above, may develop some bouncing

effects when fast control loops approach the limit rather than hard overshooting the given threshold, resulting

in non-deterministic output bouncing.

By enabling this option, the error history of the controller is zero-ed when the control output is overwritten,

effectively forcing the controller in a filtered pseudo steady state operation at the given clamping threshold.

Under this condition only the most recent control error will have impact on the controller response, which will

slightly slow down the recovery response but effectively preventing threshold bouncing.

• Allow Control Output Saturation

This feature has been added to emulate typical saturation behavior of analog compensation circuits.

Saturation/desaturation delays occur when compensation network and error amplifier of an analog feedback

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 37

loop get saturated due to control limit violations. This saturation usually occurs when the feedback is

significantly off the reference (e.g. during short circuit conditions or external output biasing). Saturated analog

feedback loops usually require some time to recover while digital feedback loops will only be clamped at

precise, defined maximum and recover immediately. Although the digital anti-windup is usually superior, there

might be use cases where the analog, soft desaturation characteristic may be preferred.

When enabled, this function will store

the most recent, unlimited control output

value in the control output history,

continuously adding to the loop

integrator, while the value written to the

defined control target will still be

clamped to the user-defined limits.

During recovery, the integrator needs to

decrease its value until the control

output is within user defined limits and

does not get overwritten by the Anti-

Windup clamping thresholds anymore.

The recovery period is not defined and

depends on the application specific

control output range vs. the maximum

number range.

DSP saturation will protect the loop from overrunning when integrating infinitely due to sustaining clamping

conditions in hardware.

Example:

The control output is programming a PWM duty cycle of a dsPIC33C device with 250 ps resolution operating

at 500 kHz switching frequency. At a user-defined maximum duty ratio of 90%, the allowed counter maximum

is 7,200. When this maximum is exceeded, the output value written to the PWM duty cycle register will be

clamped at the given maximum of 7,200 while the controller itself will keep incrementing its output until the

hardware saturation of the DSP accumulator of 32,767 will be reached. When the power supply recovers, the

integrator has to “discharge” over several control steps before the control output gets back into the nominal

operating range. During this period signal overshoots are very likely (see Figure 17).

Figure 17: Enabled Controller Saturation Example

PowerSmart™
Digital Control Library Designer

UG20181026O-page 38 © 2021 Microchip Technology Inc.

7.0 ADVANCED CODE GENERATOR OPTIONS

In addition to standard control loops PS-DCLD also allows adding special functions and advanced control features

to the generated code modules, which can be found on the Advanced tab of the controller configuration on the left

of the main window.

Figure 18: Advanced Code Generator Options

These advanced features fall into two categories:

• Development Tools

This group contains useful features and functions supporting common procedures during development.

These features are usually not meant to be present in common application code.

• Advanced Control Features

Advanced control features are additional main control loop extensions meant to be used in application

code.

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 39

7.1 Plant Measurement Support

The compensation filter of a switched-mode power supply feedback loops serves the sole purpose of

compensating non-linear gain characteristics of the power filter (plant) to stabilize its operation and prevent

undesired instabilities such as oscillations or noise transfer. This is achieved by compensating all poles in the

power plant transfer function with zeros in the compensation filter transfer function and all zeros of the power plant

transfer function with poles in the compensation filter transfer function. In general compensation poles and zeros

are placed close to / at the frequency locations of their power plant counterpart.

Hence, every design process of any feedback loop starts with the compensation of the power plant and essentially

requires knowledge about its frequency domain characteristic represented by its transfer function. This transfer

function is generally derived by using:

o Analytical equations, incorporating major component values into equations of specific equations for

known power filter topologies

o Polynomial equations defined by coefficients derived through numerical approximation

o Analog circuit simulation

o Direct measurement using Vector Network Analyzers (VNA)

Each of these approaches has its individual advances and drawbacks, which will not be further discussed in this

user guide. The only method highlighted here is the direct measurement of the power plant transfer function using

a Vector Network Analyzer.

• Theoretical Background

The frequency domain design approach of switched-mode power supply feedback loops is based on the small

signal model. This approach defines the system as combinations of interconnected transfer functions. The

simplest approach only defines two transfer functions, one defining the power plant as transfer function G(s) and

the second defining the control stage as transfer function H(s).

Figure 19: Closed Loop Model of Switched-Mode Power Supply Control System

In this model block diagram, the compensator receives the feedback signal from the system output and turns this

into a control signal. This control signal is then summed with the reference and applied to the power plant.

PowerSmart™
Digital Control Library Designer

UG20181026O-page 40 © 2021 Microchip Technology Inc.

It is important to notice that this is not an exact representation of a real-world feedback loop, where the feedback

is directly summed with the reference signal and only the remaining error signal is processed by the

compensator. However, this difference does not have any mathematical impact.

According to this model, the transfer function of the closed loop system is defined as

𝐺𝐶𝐿(𝑠) =

𝐺(𝑠)

1 + 𝐺(𝑠) × 𝐻(𝑠)

Equation 7-3

The closed loop transfer function equation shows only one unstable / undefined condition, when G(s) x H(s)

approaches a total value of -1. Translated to real-world systems, this condition would lead to even smallest

changes of the feedback signal would result in a very large response at the output, making the change on the

feedback signal difference even greater, resulting in an even greater output, eventually forcing the system into

high gain oscillation. The aspect of interest for stability analysis therefore comes down to determining the value

of the Open Loop Gain in s Closed Loop System (red)

𝐺(𝑠) × 𝐻(𝑠) > −1

The so-called Sole Point of Instability at G(s) x H(s) = -1 can be found in a frequency domain analysis by

searching for the point where the phase crosses -180°. At this point the loop gain must be negative to prevent

the system from oscillating.

Common design practices ensure this requirement is met by tuning the loop gain as close as possible to a first-

order system with a continuously falling gain of -45° (resp. -20dB/dec) over frequency and if the cross-over

frequency of the gain (point where the gain cross the 0dB line) lies within a region where the phase is still

greater than -180°.

Instability close to the Sole Pont of Instability is not a suddenly occurring condition but a gradual process. Hence,

instability (increasing difficulties in maintaining a stable power output and suppressing tendencies to oscillate)

can already be observed when the open loop gain approaches the -180° point. In a practical design, the phase

at the cross-over frequency of the gain needs some safety margin called the Phase Margin. This stability criteria

is one of three major reference points used to stability analysis:

• Phase Margin: phase-level at the point where the gain crosses 0dB

• Gain Margin: negative gain level at the point where the phase crosses -180°

• Gain slope at Cross-Over: Slope of the gain at the point where it crosses 0dB

Only if all three criteria are meeting the parameters given in design specifications, the power supply can be

assumed to be stable and reliable.

• Open Loop Gain Linearization and Regulation

As stated above, the common frequency domain design approach splits the design of a feedback loop control

stage into two major aspects:

• Compensation:

Compensation is the linearization of the power plant transfer function frequency domain

characteristic. The combination of inductive and capacitive components introduces different and

very specific poles and zeros at various locations, making the total transfer function highly non-linear

and in many cases physically impossible to apply proper regulation. Hence, the main aspect of

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 41

compensation is to linearize the non-linear characteristics of the power plant by eliminating the

effects of poles and zeros of the power plant.

Effects of Poles on the Frequency Domain Transfer Function:

In the frequency domain a pole introduces a negative gain slope of -20dB/dec, starting at the pole

location, and a change in phase of -90°, starting one decade below the pole location and ending one

decade above.

Effects of Zeros on the Frequency Domain Transfer Function:

Every zero introduces a positive gain slope of +20dB/dec, starting at the pole location, and a change

in phase of +90°, starting one decade below the pole location and ending one decade above.

Fundamental Compensation Approach:

As poles and zeros have complementary effects on gain and phase across frequency, placing a pole

at the frequency location of a zero and vice versa is sufficient to eliminate the non-linear effects of

one by the other.

Plant Pole & Zero Locations:

Power filters topologies are all, without exceptions, low-pass LC filters. All low-pass LC filters have a

similar characteristic where gain and phase run flat up to the resonant frequency of the LC filter, at

which point both drop sharply, effectively cutting off higher frequencies. This point where the drop in

gain and phase can be observed is usually the point where the power supply filter circuit starts to

approach the Sole Point of Instability. Stabilizing the power filter is therefore done by compensating

every pole and zero found in the power plant transfer function G(s) by a correcting pole or zero

counterpart in the compensation filter H(s), eventually linearizing the system, turning its frequency

domain into a flat gain and phase profile.

• Regulation:

Applying the compensation method described above, however, only stabilizes the operation of the

power plant. However, there is still no stable output regulation yet and no additional measures for

high frequency noise rejection and output impedance stabilization have been applied. This is done

by introducing a so-called Pole At The Origin, which introduces a continuous negative gain slope of -

45° (resp. -20dB/dec), bringing back the desired low-pass filter characteristic. This Pole At The

Origin is created by adding an error integrator to the feedback loop. This integration gain can be

used to adjust the total loop gain level. PS-DCLD allows adjustments of the integrator gain by

specifying the cross-over frequency of the gain slope introduced by the Pole At The Origin.

High Frequency Rejection is achieved by adding one more pole into the compensation filter, which is

not countered by a zero in the plant transfer function and which is placed at or near below the

Nyquist-Shannon frequency of the power supply or control sampling frequency (whatever is lower).

Adding an additional pole at high frequencies further reduces the gain level at frequencies above the

Sole Point of Instability, helping to improve the gain margin and thus making the power supply

robust against fast noise transients.

PowerSmart™
Digital Control Library Designer

UG20181026O-page 42 © 2021 Microchip Technology Inc.

• Deriving Pole and Zero Locations through measurements of the Plant Transfer Function

As stated above, there are multiple ways to derive the transfer function of a power filter design, ranging from

analytical models, numerical approximation, circuit simulation and bench test measurements. In general, it is safe

to state that any theoretical approach will have the ultimate weakness of requiring validation against the real

hardware under test and thus all approaches therefore require a bench test measurement at some point.

For this purpose, the PS-DCLD code generator allows the generation of a specific, Proportional controller

without error integrator, which has a continuous gain of 1 and can therefore be used to close the feedback loop

without influencing the final plant transfer function. The continuous gain of 1 will make the feedback loop

transparent to the measurement but also does not stabilize the power plant.

PLEASE NOTE

Proportional controllers are physically incapable of stabilizing a switched-mode power supply and therefore not

suited to be used for common regulation purposes. This particular controller type only serves the purpose of

allowing measurements of the power plant under defined and stable operation conditions.

Do not use this controller for any regulation tasks in your final application!

• Proportional Controller without Integrator

This specific proportional controller without integrator reads the feedback signal and determines the error with

regards to the applied reference. This error is multiplied with a single gain factor and applied to the power plant

(e.g. through a PWM duty cycle). The desired regulation point is reached when the minimum error produces its

related output value (e.g. error → 0 when the recent duty ratio produces the nominal output voltage matching

the reference). To make sure the loop ends up at this desired regulation point, the gain factor P is determined

by the ratio of the nominal output value UN over the reference signal REF.

 𝑈 = 𝑃 × 𝑒 Equation 7-4

with

U = most recent control output

P = Proportional gain factor

e = most recent error

𝑃 =

𝑈𝑁

𝑅𝐸𝐹
; ⇒ 𝑈 =

𝑈𝑁

𝑅𝐸𝐹
× 𝑒

Equation 7-5

with

U = most recent control output

UN = expected, nominal output value

REF = nominal reference

e = most recent error

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 43

This control loop can regulate the output close to the desired, nominal regulation point but will still show some

observable DC-offset. This offset may be manually adjusted to get a better representation of the PWM gain

measurement result. However, approaching the nominal operation point too close commonly increases the risk

of sudden instability. Hence, the measurement result will properly represent the power plant’s transfer function

characteristic but will be affected by some small amount of negative DC gain error.

• PS-DCLD Proportional Controller Design Guidance

By enabling the function Use P-Term Loop Controller for Plant Measurements, the PS-DCLD code generator

will add two more variables to the C-source and header files (see Figure 20). These two variables are forming

a bit-shift scaled fixed-point number of the form:

HIGH WORD LOW WORD

SCALER SIGN FACTOR

xxxxxxx xxxxxxxx x xxxxxxxx xxxxxxxx

Bit [31:16] Bit [15] Bit [14:0]

Figure 20: Enabled P-Term Control Loop Generation

PS-DCLD offers two field for entering the nominal reference and nominal output value required for the P-factor

calculation. As an additional help, calculation tools for both values are provided. By clicking on the calculator

buttons next to the value field will open the respective

PowerSmart™
Digital Control Library Designer

UG20181026O-page 44 © 2021 Microchip Technology Inc.

• Nominal Feedback Level Calculation Design Aid

Figure 21 shows the Nominal Feedback Level Calculator

window. It offers the same options as the Input Gain

Calculator window, with the difference of allowing users to

enter a user-defined sense signal.

The example loaded in Figure 21 shows the output

voltage divider window. By entering the nominal output

voltage in the marked field, this tool will calculate the

related reference value used by the controller.

By clicking OK this value is automatically entered into the

Nominal feedback level field of the main window.

This calculation too offers calculation support for

• Voltage Divider

• Shunt Amplifier/Current Sense Amplifier

• Current Sense Transformer

• Digital Source

• Nominal Control Output Level Calculation Design Aid

Figure 22 shows the Nominal Control Output Level

Calculator window. It offers calculations of duty cycles,

phase shifts and frequencies of switching signals and can

be configured by specifying PWM module parameters

such as time base resolution and switching frequency.

The example loaded in Figure 22 shows the fixed

frequency, duty cycle control output window. By entering

the nominal switching frequency and PWM time-base

resolution and duty ratio in their respective fields, the tool

will calculate the nominal control output value.

By clicking OK this value is automatically entered into the

Nominal feedback level field of the main window.

This calculation too offers calculation support for

• Fixed Frequency / Duty Ratio

• Variable Frequency

• Phase Shift PWM

Figure 21: Nominal Feedback Level Calculator

Figure 22: Nominal Control Output Level Calculator

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 45

• Duty Ratio Calculator Window

For duty ratio calculations an additional calculation tool

can be opened by clicking on the calculator button next

to the duty ratio field of the fixed frequency view

marked in Figure 22.

This calculator allows calculation of ideal duty ratios of

power converters of type

• Forward / Buck Converters

(e.g. Buck, Forward, 2-Switch Forward, Active

Clamp Forward, Half-Bridge, Full Bridge)

• Boost Converter

(e.g. Boost, PFC)

• Buck/Boost Converter

(e.g. Flyback, SEPIC, 4-Switch Buck/Boost, Non-

Isolated Buck/Boost)

• P-Term Controller Firmware Implementation

The P-Term controller uses the same API data structure as the main loop configured by PS-DCLD including all

customizations provided by the code generator option catalog, such as Enable/Disable switch or Anti-Windup.

Hence, although PS-DCLD generates an independent P-Term Controller routine inside the assembly library,

by using the same configuration as the main controller, the P-Term controller does not have to be configured

in user code. The only change users must make is to replace the function call of the main controller by the

function call of the P-Term controller routine:

my_loop_PTermUpdate(&my_loop);

• P-Term Controller Application Tips:

As stated above multiple times and is also pointed out by warnings created by PS-DCLD, the Proportional

controller is an unstable feedback loop. During a measurement it is therefore recommended to follow these

guidelines:

o Only operate the power supply under stable conditions

Make sure input voltage and load does not change while running in Proportional control mode. Any

transient introduced bares the risk of destabilizing the power supply.

o Adjust the amplitude of the injected error signal to low levels

VNAs usually support functions to adjust the maximum amplitude of the injected error signal. It is

recommended to start from low levels first and increase the signal size slowly and carefully until the

noise content of the measurement result becomes clearly visible. For further noise reduction, use

averaging modes (if available) and run continuously averaged measurements

o Protect the Device Under Test

Protection of the power supply during the measurement is mandatory as the unstable nature of the

Proportional controller may cause oscillations with unpredictable outcome at any time. In addition to

setting current limits of power sources and enabling additional protection features on the control chip,

Figure 23: Duty Ratio Calculator

PowerSmart™
Digital Control Library Designer

UG20181026O-page 46 © 2021 Microchip Technology Inc.

such as hardware comparators shutting down the PWM in case of a threshold violation, You can use

the Anti-Windup feature to limit the allowed range of control outputs to further protect the system.

o Soft Start is mandatory

The Proportional controller, as the name implies, will create a proportionally large response to large

errors. Hence, it is recommended to write a soft-start routine, which slowly increments the reference

up to the value determined during the configuration of the P-Term gain coefficient. Thus, the control

loop will never see large errors and therefore also only create small responses, limiting the risk of

driving the power supply into unpredictable oscillations.

• Bench Test Measurement Setup

This P-Term Controller implementation can be applied to any kind of loop-level, such as on outer voltage loop

level as well as for inner current loops. It also works for loops where parts of the control loop implementation

become part of the plant such as the analog comparator in peak current mode control.

The following example (Figure 24) shows the measurement setup for a single voltage mode plant transfer

function of a single, non-isolated buck converter:

Figure 24: Loop Measurement Setup

The device for measuring the loop response used in this example is a stand-alone VNA called Bode 100 from

OMICRON Lab. Further information on this device, its features and functional operating data can be found

here: https://www.omicron-lab.com/products/vector-network-analysis/bode-100/

https://www.omicron-lab.com/products/vector-network-analysis/bode-100/

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 47

• Bench Test Measurement Results

Following the process guidelines described above, the following results were derived:

Figure 25: Power Plant Measurement Result of Voltage Mode Buck Converter

As stated above, by using Proportional control without error integration during the measurement, the control

loop becomes transparent (constant gain of =1) and the recorded frequency response reproduces the transfer

function of the power plant.

PLEASE NOTE

In VNA Measurements the phase range of the result is shifted by +180°.

The small signal model defines the location at which transients are injected into the loop at the reference

(see Figure 19) while the location chosen to inject the transients in a real measurement is at the top of the

feedback path (Figure 24), hence, half way around the loop.

As a result, The Sole Point of Instability, defined by the small signal model to be found at  = 180° is

represented in the measurement results at  = 0°

This phase shift is usually appreciated in engineering as the measurement directly reflects the phase margin.

Shannon-Nyquist Limit

ESR Zero Frequency

DC Gain (PWM Gain)

Start of Phase Drop by -180°

Start of Phase Recovery by +90°

-40 dB/dec

-20 dB/dec

LC Resonant Frequency

PowerSmart™
Digital Control Library Designer

UG20181026O-page 48 © 2021 Microchip Technology Inc.

• Verifying Bench Test Measurement Results

The Device Under Test (DUT) in this example is a non-isolated, synchronous buck converter. The

measurement conditions were set at ~50% load, where the converter is operating in Continuous Conduction

Mode (CCM).

Test Conditions:

VIN = 9.0 V L = 10 µH

VOUT (nominal) = 3.30 V C = 100 µF

VOUT (real) = 2.94 V ESR = 18 m

IOUT (nominal) = 1.25 A fR = 5.03 kHz

fSW = 500 kHz fESR = 88.4 KhZ

fSAMP = 500 kHz GDC = 19.1 dB

When using Proportional controllers to measure the plant transfer function, it is important to be aware of the

error margin of the results, especially when these results are used to verify theoretical models.

In this example we use a very simple, first approximation approach to verify how well the results meet the

estimated/expected frequency response.

The values for converter components listed in under the test conditions above have been taken from the data

sheets of the used components. We use these values to quickly verify how accurate the measured pole and

zero locations and the DC-gain match.

• LC Resonant Frequency

The location of the complex-conjugate pole at the resonance of an LC filter is calculated by using the

equation

𝑓

𝑅
=

1

2𝜋 𝑅𝐶
=

1

2𝜋 𝐸𝑆𝑅 × 𝐶

Equation 7-6

with

fR = Natural Resonant Frequency of the LC Filter

L = Inductance of the main inductor

C = Total output capacity of the LC filter

Using the values listed under Test Conditions above, we get

𝑓𝑅 =
1

2𝜋 √𝐿𝐶
=

1

2𝜋 √10 × 10−6𝐻 × 100 × 10−6𝐹
= 5,033 𝐻𝑧

This equation gives the corner frequency of an LC filter, hence, the point where the gain has changed by

3 dB relative to the previous, continuous section. By using the Cursor 1 of the VNA software, this point is

located at ~5,600 Hz (see Figure 25: Power Plant Measurement Result of Voltage Mode Buck

ConverterFigure 25).

After the resonant point, the gain drops with a negative slope of ~-40 dB/dec. One decade below the

resonant frequency the phase also starts to drop with a characteristic of a -180° drop. These two

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 49

indicators point to the presence of two poles (resp. one complex conjugate pole) at the resonant

frequency. This double pole needs later to be compensated by two zeros in the compensation filter.

• ESR Frequency

The location of the RC zero introduced by the internal Equivalent Series Resistance (ESR) of the output

capacitors is calculated by using the equation:

𝑓𝐸𝑆𝑅 =

1

2𝜋 √𝐸𝑆𝑅 × 𝐶

Equation 7-7

with

fESR = Corner frequency of the RC filter formed by the internal capacity and equivalent series

resistance of the output capacitor

ESR = Equivalent Series Resistance of the output capacitor

C = Total output capacity of the LC filter

Using the values listed under Test Conditions above, we get

𝑓𝐸𝑆𝑅 =
1

2𝜋 𝐸𝑆𝑅 × 𝐶
=

1

2𝜋 × 18 × 10−3Ω × 100 × 10−6𝐹
= 88,419 𝐻𝑧

This equation gives the corner frequency of an RC filter, hence, the point where the gain has changed by

3 dB relative to the previous, continuous section. By using Cursor 2 of the VNA software, this point is

located at ~82,466 Hz (see Figure 25: Power Plant Measurement Result of Voltage Mode Buck

ConverterFigure 25).

Finding the ESR zero requires finding a change in slope by 3 dB and a related change in phase one

decade below. The change in gain is clear to identify. The change in phase, however, is partially

overlapping with the phase change introduced by the complex-conjugate pole at the resonance. The

indicator here is that the slope of the phase drop at the resonant frequency is shallowing out at/after 8

kHz. This is the counter-effect introduced by the +90° change of the ESR zero located at ~80 kHz.

In a passive filter the phase would eventually recover to 90° at fESR. However, in a switched-mode power

supply this is not the case. As the power transfer of a switched-mode power supply is “chopped” in cycles

of charging and discharging processes between inductive and capacitive components, the operating

power supply filter shows characteristics of a discrete time domain system. Hence, the total deterministic

range is limited by the Nyquist-Shannon limit fN at half of the switching frequency. Although the gain does

not show any significant drop at fN, the phase is eventually dropping to negative infinity. This effect is

amplified by also using a discrete time domain feedback loop (a.k.a. digital controller), which only

responds once per switching cycle.

• DC-Gain / PWM Gain

At low frequencies, the gain of a passive low pass filter always runs flat at 0dB with an effective gain of

=1. This unity gain region allows frequencies to pass the filter without damping. In a power supply,

however, this gain level is higher and shows a stable, constant offset up to the point where filter

components start to affect the passing transients.

PowerSmart™
Digital Control Library Designer

UG20181026O-page 50 © 2021 Microchip Technology Inc.

This gain offset is usually referred to as DC Gain or PWM Gain.

The switching cell of any PWM controller has a major impact on the plant transfer function and can

fundamentally change its order and overall characteristic. Therefore, by definition, the switching cell of the

PWM controller device is associated with the plant transfer function rather than the feedback loop. While

there are other techniques available to measure the corner frequency of passive filters and filter

components, it is the influence of the PWM generation during operation, which only can be made visible

by operating the power supply at / close to its nominal operating point.

To verify the DC Gain measurement result, we can use the equation:

𝐺𝐷𝐶 = 20 log10 (

𝑉𝐼𝑁

𝑉𝑅𝐴𝑀𝑃
)

Equation 7-8

with

GDC = Low Frequency Gain Offset (PWM Gain)

VIN = Converter Input Voltage in [V]

VRAMP = Analog PWM Ramp Generator Peak Voltage (always = 1 with digital PWM logic)

In analog PWM generators the peak voltage of the PWM ramp generator goes int the equation as input

divider. When the PWM is generated by digital logic, this dividing effect disappears. Thus, for any PWM

signal generated by digital logic the value VRAMP is set =1 V, changing the equation to:

𝐺𝐷𝐶 = 20 log10 (
𝑉𝐼𝑁

𝑉𝑅𝐴𝑀𝑃
) = 20 log10 (

𝑉𝐼𝑁

1𝑉
) = 20 log10([𝑉𝐼𝑁])

Using the parameters from the bench test measurement conditions:

𝐺𝐷𝐶 = 20 log10([𝑉𝐼𝑁]) = 20 log10(⌈9𝑉⌉) = 20 log10(9) = 19.085 𝑑𝐵

The Proportional controller used by the P-Term control loop option provided by PS-DCLD suffers, like any

Proportional controller, from a noticeable DC error. In this example this DC error becomes visible as

~10% deviation of the output voltage measured during the bench test from the given reference (2.94 V

measured output voltage vs. 3.30 V desired).

The DC Gain result, however, is not affected by this mismatch. By using Cursor 3 of the VNA software,

the DC Gain is measured at ~19,061 Hz (see Figure 25: Power Plant Measurement Result of Voltage

Mode Buck ConverterFigure 25) and thus almost perfectly matching the theoretical estimate.

However, if is important to keep in mind that this accuracy can only be met when all influencing factors

are considered, which influence the nominal output value.

In this example of a fixed frequency, duty-cycle controlled buck converter, the duty cycle is the control

output value. The buck converter topology divides its input voltage by the given duty cycle to produce the

desired output voltage. While driving a real-world power stage, the control loop is always a fraction bigger

than its ideal estimate as it needs to compensate for losses.

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 51

The influencing factors are:

• Input Voltage

• Output Voltage

• Efficiency

In our case the efficiency of the power supply is estimated with 90%. The measured DC gain value only

turns out to be accurate if this additional parameter is considered.

7.2 Adaptive Gain Control

In general, adaptive control mechanisms are commonly used to compensate for effects of undesired parameter

changes during runtime, tuning the system for specific performance criteria, enhance efficiency or higher

reliability. Each of these approaches have their individual parameter matrix determining which additional

parameters must be considered to tune one or more system parameters to achieve the desired outcome.

Algorithms and parameter matrices can be very different depending on purpose and scope of the adaptation but

may also be highly hardware dependent.

• Adaptive Control Fundamentals

Because the variety of adaptive measures is huge, basic principles of adaptive control can only be defined

on a higher, unspecific level. However, there are three major aspects applying for any system:

o Parameter Matrix

The ultimate starting point is the determination of dependencies of the parameter PX we intend to

modulate. When these dependencies are known and understood, we (ideally) end up with an equation

where the new value of PX is calculated based on its dependencies, which are determined by other

parameters P1, P2, …, Pn. Dependent on the complexity of the model, parameters Pn may be observable

(e.g. through direct measurements) allowing a system identification at runtime. This type of adaptive

control is called Model Identification Adaptive Control (MIAC). More complex dependencies may require

basing the adaptive control block on reference models, where values of PX are commonly estimated

based on characterization. This type of adaptive control is called Model Reference Adaptive Control

(MRAC).

o Observer / System Identification

Once the parameter matrix is known, so-called Observers are installed monitoring the change of

relevant/influencing parameters Pn, detecting relevant changes and triggering the modulation of PX.

Relevance is highly system dependent and eventually determines the Granularity of Adaptive Steps

across a certain modulation range.

Adjusting the granularity of adaptive steps is an important part of the design process as low granularity

may introduce undesired side-effects such as noise.

o Modulator

The Modulator is the mechanism which eventually changes the parameter PX at runtime. Yet again,

implementations may differ widely, however, important design aspects can be narrowed down to the

modulation frequency and maximum change rate per modulation step. In a power supply controller, the

point in time relative to switching cycles may also be relevant to ensure reliable operation

PowerSmart™
Digital Control Library Designer

UG20181026O-page 52 © 2021 Microchip Technology Inc.

• Adaptive Gain Control (AGC) Introduction

AGC is a specific method for tuning the overall feedback loop gain during runtime. It falls into the

classification of Nondual Adaptive Controllers and can be implemented as Model Identification Adaptive

Control (MIAC) as well as Model Reference Adaptive Control (MRAC).

With other words, the fundamental main control loop is deterministic and is working satisfactorily in a specific

region but may need optimization to do so across the entire operating range. In a digital power supply

control feedback loop this translates into having a static controller with one, static set of coefficients

optimized for a defined state of operation (e.g. at a specific input voltage while under a specific load

condition), just like any analog feedback loop where poles and zeros of the compensation network as well as

the integrator gain are fixed by component values of resistors and capacitors in the feedback loop of the

error amplifier. In systems like these, corner cases such as no-load, light load or when operating under high-

or low-line conditions, the system’s transient response will divert from the desired optimum and must be

verified to lie within the safe operating area of stability margins specified for each individual design.

For many designs, this approach is sufficient and corner cases at the extremes can be covered by designing

for wider tolerance margins as needed. However, there is also a wide range of applications, where large

deviations are not acceptable, like in Point-Of-Load (POL) or Voltage Regulator Modules (VRM) powering

sensitive and demanding high speed digital loads, or when the range over which fundamental system

parameters change is too wide to be covered by one static feedback loop, such as in Power Factor

Correction (PFC).

For these cases, Adaptive Gain Control offers a generic, adaptive feedback loop gain tuning option with a

high degree of flexibility and scalability.

• Adaptive Gain Control (AGC) Use Case Example

Figure 26 shows the implementation of AGC as Feed Forward controller, adapting the loop gain of the

compensator HC(z) dependent on changes in input voltage VIN.

It consists of

o a second data source input (ADC) for the converter input voltage VIN

o an observer, triggering on relevant changes requiring compensation of plant gain variations

o a modulator tuning the feedback compensation loop gain

Depending on the gain modulation should be only respond to changes in input voltage, one input port is

sufficient to compensate plant gain variations. However, more precise gain variation compensation can be

achieved by additionally include the most recent output voltage and load into the modulation scheme.

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 53

Figure 26: Adaptive Gain Control (Feed Forward) Block Diagram

• AGC Modulator

The AGC modulator increases or decreases the total feedback loop gain by adjusting the cross-over

frequency of the gain of the pole at the origin (integrator gain) at runtime. The analysis of the transfer

function equation of an analog derivative of the digital z-domain filter, which may be used as prototype filter

for a bi-linear transform, is used to derive the dependencies of digital filter coefficients and to determine and

establish an appropriate modulation scheme.

Although the bi-linear transform of an analog prototype filter is not essentially required to derive filter

coefficients of a digital control loop, it is used here to mathematically derive the physical dependencies of

each coefficient. Starting from a common transfer function of a type III compensator, we find that the

equation determining the feedback loop controller consists of two major blocks:

𝐻𝑐(𝑠) =
𝜔𝑃0

𝑠
 ×

(
𝑠

𝜔𝑍1
+ 1) (

𝑠
𝜔𝑍2

+ 1)

(
𝑠

𝜔𝑃1
+ 1) (

𝑠
𝜔𝑃2

+ 1)

Equation 7-9

 Integrator Gain Lead-Lag Compensator

by substituting the Laplace operator s by the term
(Tustin or Trapezoidal Substitution)

2

𝑇𝑠
 
(1  −  𝑧−1)

(1  +  𝑧−1)

We can derive equations for each individual coefficient A1, A2, A3 and B0, B1, B2, B3, which will be used within

the Linear Difference Equation (LDE) computation determining the next control output u(n).

 𝑢𝑛 = +𝐴3𝑢𝑛−3 + 𝐴2𝑢𝑛−2 + 𝐴1𝑢𝑛−1 + 𝐵3𝑒𝑛−3 + 𝐵2𝑒𝑛−2 + 𝐵1𝑒𝑛−1 + 𝐵0𝑒𝑛 Equation 7-10

Observing the results of each individual coefficient equation, we find that the integrator gain introduced into

the control system by the presence of the pole at the origin P0 only influences the B-coefficients while all

A-coefficients remain unchanged. Furthermore, the cross-over-frequency of the gain introduced by the pole

at the origin P0 only appears as simple factor to the rest of the coefficient equation.

PowerSmart™
Digital Control Library Designer

UG20181026O-page 54 © 2021 Microchip Technology Inc.

Digital Type III (3P3Z) Coefficient Equations:

𝐴1 = −

(−12 + 𝑇𝑆
2𝜔𝑃1𝜔𝑃2 − 2𝑇𝑆(𝜔𝑃1 + 𝜔𝑃2))

(2 + 𝑇𝑆𝜔𝑃1)(2 + 𝑇𝑆𝜔𝑃2)
 Equation 7-11

𝐴2 =

(−12 + 𝑇𝑆
2𝜔𝑃1𝜔𝑃2 + 2𝑇𝑆(𝜔𝑃1 + 𝜔𝑃2))

(2 + 𝑇𝑆𝜔𝑃1)(2 + 𝑇𝑆𝜔𝑃2)
 Equation 7-12

𝐴3 =

(−2 + 𝑇𝑆𝜔𝑃1)(−2 + 𝑇𝑆𝜔𝑃2)

(2 + 𝑇𝑆𝜔𝑃1)(2 + 𝑇𝑆𝜔𝑃2)
 Equation 7-13

𝐵0 = 𝜔𝑃0

𝜔𝑃1𝜔𝑃2𝑇𝑆(2 + 𝑇𝑆𝜔𝑍1)(2 + 𝑇𝑆𝜔𝑍2)

2𝜔𝑍1𝜔𝑍2(2 + 𝑇𝑆𝜔𝑃1)(2 + 𝑇𝑆𝜔𝑃2)
 Equation 7-14

𝐵1 = 𝜔𝑃0
𝜔𝑃1𝜔𝑃2𝑇𝑆 (−4 + 3𝑇𝑆

2𝜔𝑍1𝜔𝑍2 + 2𝑇𝑆(𝜔𝑍1 + 𝜔𝑍2))

2𝜔𝑍1𝜔𝑍2(2 + 𝑇𝑆𝜔𝑃1)(2 + 𝑇𝑆𝜔𝑃2)
 Equation 7-15

𝐵2 = 𝜔𝑃0
𝜔𝑃1𝜔𝑃2𝑇𝑆 (−4 + 3𝑇𝑆

2𝜔𝑍1𝜔𝑍2 − 2𝑇𝑆(𝜔𝑍1 + 𝜔𝑍2))

2𝜔𝑍1𝜔𝑍2(2 + 𝑇𝑆𝜔𝑃1)(2 + 𝑇𝑆𝜔𝑃2)
 Equation 7-16

𝐵3 = 𝜔𝑃0

𝜔𝑃1𝜔𝑃2𝑇𝑆(−2 + 𝑇𝑆𝜔𝑍1)(−2 + 𝑇𝑆𝜔𝑍2)

2𝜔𝑍1𝜔𝑍2(2 + 𝑇𝑆𝜔𝑃1)(2 + 𝑇𝑆𝜔𝑃2)
 Equation 7-17

PLEASE NOTE

This relationship is true for all lead-lag compensators and is independent from the control order.

Hence, this modulation technique is applicable to all control orders and to all feedback loop such as outer

voltage loops or inner current loops.

Modulating the loop gain can therefore be performed by multiplying a modulation factor kAGC with all B-

coefficients during runtime to achieve active loop gain modulation, effectively changing the LDE (Equation

7-10) into:

 𝑢𝑛 = +𝐴3𝑢𝑛−3 + 𝐴2𝑢𝑛−2 + 𝐴1𝑢𝑛−1 + 𝑘𝐴𝐺𝐶 (𝐵3𝑒𝑛−3 + 𝐵2𝑒𝑛−2 + 𝐵1𝑒𝑛−1 + 𝐵0𝑒𝑛) Equation 7-18

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 55

• AGC Modulator Implementation

When enabling the option Enable Loop Gain Modulation in PS-DCLD, the code generator adds the

additional multiplication of a user-specified factor agcFactor with the intermediate result after the B-term

computation and before A-term and B-term of the LDE get added to form the final control output result.

Figure 27: Adaptive Gain Control Configuration

The modulation factor is of the following format of a 32-bit wide, bit-shift scaled fractional number:

HIGH WORD LOW WORD

SCALER SIGN FACTOR

xxxxxxx xxxxxxxx x xxxxxxxx xxxxxxxx

Bit [31:16] Bit [15] Bit [14:0]

Scaler and factor are declared as two, separate 16-bit values for improved execution performance.

PS-DCLD adds default values to the C-Source file of the generated code. These default values will be

loaded automatically into the NPNZ16b_t data structure during initialization of the main loop coefficients.

Both values are also provided as global variable in the C-Header and are available to be changed to

different default values in user code before the initialization routine is called.

PowerSmart™
Digital Control Library Designer

UG20181026O-page 56 © 2021 Microchip Technology Inc.

PLEASE NOTE

This factor is always initiated by default with a value of =1 to allow transparent operation (without modulation) of

the main loop until active modulation is applied.

• AGC Modulator Options

When the AGC modulator function is enabled, PS-DCLD offers two more options to tailor its use inside the

Assembly code and throughout the user software:

o Add Enable/Disable Adaptive Gain Control

In some applications it may not be desired to apply feedback gain modulation continuously but to restrict

the execution of the modulation to certain operating conditions such as when adding a defined gain

boost when the converter drops in discontinuous conduction mode, limiting the feedback gain during

startup or adjusting feedback gain at the extremes of the rail voltages. During validation, this option may

also be useful to run comparison measurements between an AGC modulated control loop versus a

static loop.

To cover these application specific aspects, Enable/Disable control can be added to the assembly code.

When disabled, the feedback gain modulation will be bypassed, and the compensation filter will be

executed in the common way (B-coefficients will remain unchanged).

When Enable/Disable Adaptive Gain Control has been added, the agc_enabled bit in the status

word of the NPNZ16b_t data structure of the main controller can be used to manually turn AGC

modulation on and off in user code.

o Add Observer Function Call before Modulation

Observers need to be tailored to design-specific values and feedback sources may differ widely from

design to design. Purpose and scope of the feedback gain modulation determines what parameter

matrix is appropriate for determining the modulation rate as well as the call rate (call frequency) with

which the modulation is executed. Further, the implementation of deriving the modulation may also differ

significantly. An MIAC implementation may take up significant CPU resources to calculate the new

modulation factor based on real-time data, while MRAC implementations may provide data points of the

parameter matrix in pre-defined tables. Depending on available resources and control frequency

(available time to execute this calculation), calculations might have to be replaced by simpler look-up

tables.

To support any of these approaches and provide the user with an approach to create the most effective

implementation possible, a function pointer can be added to the NPNZ16b_t data structure, pointing to a

user-defined function in which the appropriate steps can be taken deriving the modulation factor. This

function will be called just before the new modulation factor is applied to B-coefficients on a cycle-by-

cycle basis.

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 57

PLEASE NOTE

When the Add Observer Function Call before Modulation option is enabled, users must declare a pointer to a

publicly accessible function. If this option is enabled and no function pointer is declared (Null-pointer) or the

control loop is executed before the function pointer got initialized, an Address Error Trap will be thrown.

This example shows how this function pointer is declared:

my_loop.GainControl.ptrAgcObserverFunction = (uint16_t)&my_function;

o Optimize AGC Modulation Factor Accuracy

As described above, the loop gain is modulated by multiplying the z-domain transfer function numerator

by an additional gain factor. This only affects B-coefficients. This multiplication is inserted into the

assembly code after the computation of the B-term of the LDE by multiplying the recent accumulator

contents by the AGC factor in fast floating-point format. During the process, the 40-bit wide contents of

the accumulator get rounded to a 16-bit wide number, which reduces the number resolution and thus

may reduce the accuracy of the gain modulation. By enabling this function additional code is added

dynamically reducing the number of bits lost during the process, helping to mitigate the loss in accuracy.

• AGC Observers

As stated above, observers determining/updating the modulation factor during runtime may be very different

depending on the scope and purpose of the feedback gain modulation. Hence. generation of observer code

is currently not supported by PS-DCLD.

Future versions may offer default implementations for the most common use-cases such as feed-forward

control and output impedance tuning. However, at the point of this release, these are only available as code

example.

PowerSmart™
Digital Control Library Designer

UG20181026O-page 58 © 2021 Microchip Technology Inc.

7.3 User Extensions

In some use cases the generic controller code generated

by PS-DCLD may come short and additional operations

may be required to meet the needs of control system

implementation, such as additional feedback conditioning

calculations, non-linear output value modulations or

cascading of multiple loops or functions. The User

Extensions feature is closing this gap by allowing users to

loop-in proprietary user code modules into the real-time

control loop assembly library.

• Using User Extension Options

User Extensions are additional function calls (so-called

hooks), which are added at specific locations within the

real-time control loop execution.

The flow chart on the left shows the typical software flow of

a NPNZ16c controller object real-time control loop. The

optional hook locations are shown with orange circles.

Boxes shown in grey indicate code blocks, which can be

added/removed by enabling/disabling their respective

options in the Source Code Configuration Catalog (see 6.0

Code Generator Options). Boxes shown in green indicate

fixed default code blocks, which will always be added. Si

one of the grey code blocks removed, the hook will be

injected after the previous code block.

Hook locations:

▪ Start of Control Loop (Hook Start)

This hook is injected between the DSP configuration

and the computation of the A-term of the

compensation filter.

▪ After Reading Source (Hook Source)

This hook is injected after the most recent input value

has been read from its declared memory address

and after any additional feedback conditioning

functions are enabled, such as offset compensation

or signal inversion.

▪ Before Anti-Windup (Hook Pre Anti-Windup)

This hook is injected after the compensation filter

computation is complete but before Anti-Windup

clamping is applied to the most recent control output.
Figure 28: NPNZ16b Control Loop Flow Chart

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 59

▪ Before Writing to Target (Hook PreTargetWrite)

This hook is injected after Anti-Windup clamping has been applied to the most recent controller

output but before the value is written to the declared target memory address.

▪ End of Control Loop (Hook EndOfLoop)

This hook is injected after the control loop execution has been completed but before restoring the

context. If the Enable/Disable feature is used, this hook will be bypassed when the control loop is

disabled.

▪ Cascade Function Call (Hook Exit)

This hook will be injected at the very end of the control loop update routine. This hook will always be

active, even if the Enable/Disable feature is used and the control loop is disabled.

Please review the special considerations of Cascade Function Calls below before using this hook.

• Adding User Extension Functions

A User Extension Function can be added anywhere in a project. The function may be written in C or

Assembly language. The proprietary user function is then assigned to a specific hook by declaring a 16-bit

wide function pointer address in the NPNZ16b_t controller object (see 4.1 NPNZ16b_t Object Configuration).

By enabling the respective hook in PS-DCLD, a function call of the function at the given pointer address will

be added to the assembly code.

Please note:

Each hook will call the user declared function using the call instruction, which will call the function

immediately and without saving the most recent context. This indirect sub-routine call reaches over the

first 32K instructions of program memory only. Therefore, it is highly recommended that any user

extension function is declared with the attribute near to force the compiler to locate user extensions in the

addressable range of the call instruction:

Example:

extern void __attribute__((near)) my function(void);

The function pointer will be placed in working register WREG12 while leaving all other working registers

unchanged. Hence, each operation within the user function requires individual context management to

prevent accidental data corruption.

PowerSmart™
Digital Control Library Designer

UG20181026O-page 60 © 2021 Microchip Technology Inc.

TABLE 8: USER EXTENSION HOOKS WORKING REGISTER STATUS

Hook WREG Usage Description

START

WREG0 Pointer to NPNZ16b_t data structure (DO NOT OVERWRITE)

WREG12 Function-pointer address of recent user extension function

WREG13 Function parameter of recent user extension functions (optional)

Note: Working registers not listed may contain obsolete data, which can be overwritten by the user function.

Hook WREG Usage Description

SOURCE

WREG0 Pointer to NPNZ16b_t data structure (DO NOT OVERWRITE)

WREG1 Most recent, compensated data input

WREG12 Function-pointer address of recent user extension function

WREG13 Function parameter of recent user extension functions (optional)

Note: Working registers not listed may contain obsolete data, which can be overwritten by the user function.

Hook WREG Usage Description

PRE
ANTI-WINDUP

WREG0 Pointer to NPNZ16b_t data structure (DO NOT OVERWRITE)

WREG4 Most recent, unclamped control output

WREG12 Function-pointer address of recent user extension function

WREG13 Function parameter of recent user extension functions (optional)

Note: Working registers not listed may contain obsolete data, which can be overwritten by the user function.

Hook WREG Usage Description

PRE TARGET
WRITE

WREG0 Pointer to NPNZ16b_t data structure (DO NOT OVERWRITE)

WREG4 Most recent, clamped control output

WREG12 Function-pointer address of recent user extension function

WREG13 Function parameter of recent user extension functions (optional)

Note: Working registers not listed may contain obsolete data, which can be overwritten by the user function.

Hook WREG Usage Description

END OF LOOP
WREG0 Function-pointer address of recent user extension function

WREG1 Function parameter of recent user extension functions (optional)

Note: Working registers not listed may contain obsolete data, which can be overwritten by the user function.

Hook WREG Usage Description

EXIT
WREG0 Function parameter of recent user extension functions (optional)

WREG1 Function-pointer address of recent user extension function

Note: Working registers not listed may contain obsolete data, which can be overwritten by the user function.

Example:

The project contains a user extension function called my_function(). This function should be called after

the control loop has read the most recent feedback input but before the most recent error is calculated.

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 61

Step 1: Enabling the Hook

In PS-DCLD, go to tab Advanced and enable Add User Extensions. Enable hook After Reading Source.

Click on Update Code and click Export Files to export newly generated files into the project.

Step 2: Assigning Function to New added Hook

In user code, declare a function pointer and assign it to the respective hook in the NPNZ16b controller object

using the following code line:

v_loop.ExtensionHooks.ptrExtHookSourceFunction = (uint16_t)&my_function;

Please note: To support different function types casting to type uint16_t is required.

• Adding User Extension Function Parameter

Each user extension function hook is complemented with a dedicated, 16-bit wide function parameter of type

uint16_t (unsinged integer). This function parameter can be stored in the respective data field in the

NPNZ16b data structure. These parameters are

• ExtHookStartFunctionParam

• ExtHookSourceFunctionParam

• ExtHookPreAntiWindupFunctionParam

• ExtHookPreTargetWriteFunctionParam

• ExtHookEndOfLoopFunctionParam

• ExtHookExitFunctionParam

Assigned user extension function hook parameters will be written to working register WREG13 before the user

extension function is called.

This parameter can be a

• single constant

• pointer to a variable

• pointer to a Special Function Register (SFR)

• pointer to a user-defined data structure

In addition, the NPNZ16b data structure offers data fields for further user parameters usrParam0 to

usrParam7 in sub-structure Advanced of type NPNZ_USER_DATA_BUFFER_t. These data fields provide an

unassigned data space user functions can use to store and exchange data.

Example:

User extension function #1 is called by hook START to determine the ratio of two voltages before the control

loop is executed. This ratio is used to calculate parameter VIO_RATIO, which is stored by function #1 in data

space usrParam0. User extension function #2 is called by hook PRE-ANTI-WINDUP where the variable

VIO_RATIO is used to calculate and add a correction factor onto the most recent control output, before Anti-

Windup clamping is applied.

PowerSmart™
Digital Control Library Designer

UG20181026O-page 62 © 2021 Microchip Technology Inc.

Example 1: User Extension Function with constant parameter

a) User Assembly function clamping the most recent control input to a user defined maximum value

The following assembly code will be called after the most recent control input has been read from the

source address. This user function is used to clamp its value to a user defined maximum. When called,

working register WREG1 holds the value of the most recent control input. The content of this register is

now compared against the content of working register WREG13, which holds the user defined function

parameter. If the content of WREG1 is greater than the content of WREG13, the following instruction will

be executed and the content of working register WREG13 will be copied to working register WREG1,

effectively overriding the most recent control input with the user defined maximum.

If the content of working register WREG1 is less than the content of WREG13, the next instruction is

skipped, and the value of the most recent control input is passed back to the controller function.

.nolist ; (no external dependencies)
.list ; list of all external dependencies
.section .text ; place code in the text section

.global _fooInputClamping ; provide global scope to routine

_fooInputClamping: ; local function label

; compare most recent input against allowed maximum

; and skip next instruction if input is less than parameter

; override most recent input with maximum

cpslt w1, w13 ; compare

mov w13, w1 ; override

return ; end of function; return to caller

.end ; end of file

b) Global Function declaration in C Code

The following function call prototype declaration is placed in C code to declare the Assembly function

fooInputOverride as public function. Once the function becomes visible, it can be assigned to the

NPNZ16b controller data object.

extern void __attribute__((near)) fooInputOverride(volatile uint16_t maximum);

c) Assignment of user extension function and its parameter

Finally, the new user extension function gets assigned to the NPNZ16b control data object. Hook Source

is used to clamp the input value to a user defined maximum. The function pointer is stored as pain 16-bit

unsigned integer value by casting the 23-bit wide pointer to type uint16_t.

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 63

The user defined maximum is declared as 16-bit wide unsigned integer of type uint16_t.

/* Extension Functions Configuration */

 // Pointer to user extension function ‘fooInputOverride’

 my_loop.ExtensionHooks.ptrExtHookSourceFunction = (uint16_t)&fooInputOverride;

 // User extension function parameter ‘maximum’
 my_loop.ExtensionHooks.ExtHookSourceFunctionParam = 1023;

Example 2: User Extension Function with pointer to Special Function Register (SFR)

a) User Assembly function compensating the feedback using an external offset signal

In this example a second ADC input is used to add a dynamic offset to the common feedback input of the

control loop (= Source). The function parameter in this example represents a pointer to the ADC result

buffer ADCBUF16, from which the offset value is derived. The contents of ADCBUF 16 are then

subtracted from the most recent control input.

.nolist ; (no external dependencies)
.list ; list of all external dependencies
.section .text ; place code in the text section

.global _fooDynamicOffsetCompensation ; provide global scope to routine

_fooDynamicOffsetCompensation: ; local function label

; reading the value from an ADC buffer and subtracting

; the content from the most recent control input

subr w1, [w13], w1 ; subtract external offset from most recent control input

return ; end of function; return to caller

.end ; end of file

b) Global Function declaration in C Code

The following function call prototype declaration is placed in C code to declare the Assembly function

fooDynamicOffsetCompensation as public function. Once the function becomes visible, it can be

assigned to the NPNZ16b controller data object.

extern void __attribute__((near)) fooDynamicOffsetCompensation

 (volatile uint16_t* adc_buffer);

PowerSmart™
Digital Control Library Designer

UG20181026O-page 64 © 2021 Microchip Technology Inc.

c) Assignment of user extension function and its parameter

Like in the previous example, Hook Source is used to call the hook function. The user parameter is the

pointer address of ADCBUF16. Just like the function pointer, it is declared as 16-bit wide unsigned integer

of type uint16_t.

/* Extension Functions Configuration */

 // Pointer to user extension function ‘fooDynamicOffsetCompensation
my_loop.ExtensionHooks.ptrExtHookSourceFunction = (uint16_t)&fooDynamicOffsetCompensation;

 // User extension function parameter ‘adc_buffer’
my_loop.ExtensionHooks.ExtHookSourceFunctionParam = (uint16_t)&ADCBUF16;

• Adding a Cascade Function Call (User Extension Function Hook EXIT):

This option allows to call another, user-defined, external function after the execution of the control loop

execution has completed. This is useful when functions need to be synchronized to the control loop execution

and/or for building up cascades feedback loops in multi-loop systems such as average current mode

controllers.

Use-Case Example:

In average current mode control (ACMC), the reference perturbation of the inner current loop by the outer

voltage loop must be slower than the bandwidth of the inner current loop. The inner controller always needs

enough time to respond to the change in reference before the next perturbation occurs to remain stable. One

option is to call the outer voltage loop approx. six to ten times slower to provide enough time for the inner

current controller to follow. However, the longer the reference update interval, the larger the perturbation step.

The larger the step, the more dominant the response of the current controller will be. This behavior often

generates observable noise in the control system resulting in less deterministic output voltages and injected,

overlaying control frequencies. A better approach is to call voltage and current loop at the same control

frequency and damp the reference perturbation by reducing the cross-over frequency of the outer voltage loop.

As a result, the current reference will be perturbated by continuous but very small steps, allowing the current

controller to follow without causing disturbances of the output.

In this scenario the current loop can directly be coupled to the voltage loop execution using the User Extension

Function Hook END to improve the total response time from voltage error to current response by effectively

eliminating additional overhead for function call CPU cycles.

Application Tip:

Using the timing chart in PS-DCLD allows to determine the execution time of each loop. This allows to work

out the timing of the total, tightly coupled multi-loop cascade. As voltage feedbacks are usually insensitive to

ADC trigger placement offsets while current feedbacks require a very precise trigger placement to provide

accurate data, the cascaded control chain can be synchronized to the current feedback cycle. The ADC

Trigger Offset feature can be used to optimize the placement of the voltage feedback trigger to ensure both

loops have a minimum response time. This setup will result in low phase erosion, low output noise and stable

but agile response.

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 65

8.0 CODE GENERATION

Although the code generator is generating code in real time when configurations in PS-DCLD are modified, it does

not generate output files by default. This process must be deliberately executed by the user following these steps:

• Specifying File Destinations

o Save the Most Recent Configuration

PS-DCLD is using relative file paths by default. Absolute file paths are only used when no reference

directory is available, or file locations are non-local (e.g. file destinations on network drives or cloud

servers). To allow PS-DCLD creating the correct relative path references, it is recommended that you save

the most recent configuration to a known location, ideally, but not necessarily, inside the code project

directory.

o Specify the MPLAB® X Project

PS-DCLD has been developed as add-

on tool for the MPLAB® X Integrated

Development Environment (IDE).

When code files are added to a project,

file locations and especially header file

inclusions need to be specified

correctly to prevent conflicts with the

C-Compiler include paths. The

compiler always starts in the main

project directory (location of the

Makefile), but users can also specify

other include paths for common and

special C-sources as well as assembly

include paths.

The declaration of the Default Include

Directories (marked in red in Figure 29)

needs special attention. The

directories specified here will be used

by PS-DCLD in #include pre-

compiler directives and file location

declarations.

To ensure PS-DCLD is generating the

correct include paths in the C-source

and header files, the location of the

MPLAB® X project root directory

needs to be known.

Project associations are specified in the project configuration window. By opening a MPLAB® X project file,

PS-DCLD will read all required information from the MPLAB® X project XML file.

This project configuration window will automatically open when PS-DCLD detects conflicts with path

declarations or if the project has not been specified yet.

Figure 29: MPLAB® X Project Root Directory Declaration

PowerSmart™
Digital Control Library Designer

UG20181026O-page 66 © 2021 Microchip Technology Inc.

As soon as the configuration file locations and MPLAB® X project location are known, PS-DCLD can

generate and export source code files.

o Specify the Target Directory for Every Code File

Figure 30 shows the file location declaration tab of the configuration window. Here the desired file

locations of assembly source file, API C-source file, API C-header file, NPNZ16b object library header file

and the optional NPNZ16b assembly include file are specified. Use these entry text boxes to declare the

path to the directory in which the generated code file should be placed.

Figure 30: Source Code File Target Directory Declaration

• Generate & Export Code Files

Figure 31 below shows the File Export window of PS-DCLD. Once the recent PS-DCLD configuration as been

assigned to a MPLAB X project file and all file locations have been declared in the configuration window, code

can be generated. The code generation process consists of two generation steps:

o Update Generated Source Code (source code refresh)

o Export Generated Files (actual file generation in specified locations)

These two steps can be executed either one-by-one by first clicking on Tools → Update Generated Source

Code and then opening the File Export window or can be executed in one single step when the option Enable

One-Click Export is enabled in menu Tools → Enable One-Click Export.

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 67

Figure 31: Code Generator File Export Window

If you would like to restrict the generation of files to individual items, use the check boxes to determine which

files should be created (see Figure 31). Would you like to modify file locations you can open the configuration

window by clicking on the Edit Configuration link on the lower right corner of the dialog.

The PS-DCLD Tool Bar also allows quick access to the two generation steps Update and Export. When option

Enable One-Click Export is enabled, one single click on Export will perform Update and Export sequentially.

Figure 32: Code Generator Tool Bar

PowerSmart™
Digital Control Library Designer

UG20181026O-page 68 © 2021 Microchip Technology Inc.

9.0 USING PS-DCLD WITH MPLAB® X IDE

When installing PS-DCLD on a Windows® computer, the setup program will associate the file type *.dcld with the

PowerSmart™ Digital Control Library Designer application executable psDCLD.exe.

When you use this tool to create a control library for your dsPIC® project, the PS-DCLD configuration file can be

included in your MPLAB® X project files to ease access by allowing to open the tool from inside the MPLAB® X

Integrated Development Environment (IDE).

• Adding PS-DCLD Configuration Files to X Project

The recommended procedure to add PS-DCLD

configuration files to your project is to place them in the

Important Files folder, which is automatically created

with the new project. This folder is also the home of the

Makefile used by compiler and linker to build the

project.

Right-click on the Important Files folder in the project

manager and select Add Item to Important Files.

(see Figure 34)

From the File Browser dialog, select the PS-DCLD

configuration file which should be added to the project

and click Open. (see Figure 33)

The selected PS-DCLD configuration file will now be

shown in the Important Files folder in the Project

Manager. You can now open and access PS-DCLD from

the Project Manager view in MPLAB® X.

If you would like to add multiple configurations for more

than one control loop, repeat the described process until

all control loop configurations for this project have been

added to the project.

Figure 34: Adding PS-DCLD Configuration Files to a
Project

Figure 33: Select the PS-DCLD Configuration File

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 69

• Opening PS-DCLD from MPLAB® X Project Manager

When a control loop needs to be reconfigured during the

development process, you can open the PS-DCLD GUI

directly from MPLAB® X Project Manager by following

these steps (see Figure 35):

o Right-click on the PS-DCLD configuration file in the

MPLAB® X Project Manager

o Click Open in System

This will open your saved PS-DCLD configuration in the

PS-DCLD GUI where you can modify your configuration.

When your edits to the settings are complete, click on

Export to update the control loop project files. MPLAB® X

will immediately recognize the externally changed files and

refresh them inside the editor window. The project can

then be immediately built without further steps. The PS-

DCLD GUI can remain open to make further adjustments,

if necessary.

PLEASE NOTE

When PS-DCLD generates and exports code files, previous version will be overwritten without warning. Any

manual changes you may have made to these files will be lost. However, the MPLAB® X Editor offers a History

feature, which can be used to restore previous code sections if files got overwritten accidentally.

Figure 35: Opening PS-DCLD from the MPLAB X IDE

PowerSmart™
Digital Control Library Designer

UG20181026O-page 70 © 2021 Microchip Technology Inc.

• File Locations and Include Paths

Generated header files are included by #include pre-compiler directives at the top of C-source and C-header

files. In some projects it may be required to include the user-specified file path in addition to the filename alone.

This is achieved by enabling the Add file location in generated code #include path option at the very top of each

code generator output window. (see Figure 36)

Please review section 8.0 Code Generation of this user guide for more information on file references.

Figure 36: Include file path in #include pre-compiler directives

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 71

10.0 APPLICATION INFORMATION / TROUBLESHOOTING

10.1 Application Information Window

Figure 37: Application Information Window

TABLE 9: APPLICATION INFORMATION OUTPUT WINDOW DESCRIPTION

No Description

1 Control loop / Code generator configuration option catalog

2 Configuration Output View selection

3 Application Information Window view

The application information window is an additional software debugging tool helping to verify proper and reliable

output results and offers additional information for troubleshooting software and platform issues. It lists important

system information, folder settings and application startup information.

Please use this information when seeking support.

1

2

3

PowerSmart™
Digital Control Library Designer

UG20181026O-page 72 © 2021 Microchip Technology Inc.

10.2 Process Output Window

More detailed information can be found in the process output

window. It is located at the bottom of the Source Code Output tab on

the right side of the main window. (see Figure 39). If the process

output window is not visible, it can be opened from the View menu

like shown in Figure 38.

The process output window displays internal process data generated

during the update of coefficients, transfer function calculations,

timing chart calculations, code generation and file export. In case of

exceptions during any of these processes, detailed error messages

will be generated, which can be used for further troubleshooting.

Figure 39: Process Output Window

Figure 38: Open the Output Window from
the View menu

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 73

11.0 COMMON USE CASES AND APPLICATION GUIDANCE

Code file organization in complex control system may require have to be very different from project to project. PS-

DCLD is offering multiple options to tailor the way code files are generated and named to give designers a much

flexibility as possible.

11.1 Multiple Controllers using the same Assembly Library

The PS-DCLD code generator is creating the following four essential library files by default: (see Chapter 8.0 Code

Generation)

o Assembly Library File

o Library C-Source File

o Library C-Header Files

o Generic Library Header File

o Generic Library Include File (optional)

When creating a single-loop control system, all four files are required for a proper implementation of the control

loop library code. In systems driving multiple identical converters with the exact same compensator type and

control features, however, might be desired to limit the number of generated files to save memory space in the

target device.

In this scenario, every converter can be controlled using the exact same assembly code. Each converter, however,

needs its independent data structure where filter coefficients and especially the control and error histories are

managed individually. In this case it is possible to create two or more independent PS-DCLD configuration files of

which one configuration is set to generate and export all fundamental controller files

o Assembly Library File

o Library C-Source File

o Library C-Header Files

o Generic Library Header File

o Generic Library Include File (optional)

Every additional controller only requires its individual coefficient and variable declarations, which are exclusively

covered by

o Library C-Source File

o Library C-Header Files

Please review section 8.0 Code Generation and how to use the File Export window (Figure 31) for selective source

file generation.

PowerSmart™
Digital Control Library Designer

UG20181026O-page 74 © 2021 Microchip Technology Inc.

PLEASE NOTE

The Function Name label of the initially generated assembly code will be determined by the PS-DCLD

configuration which was used to generate them. When assembly files are used for multiple controllers, make

sure the function calls placed in user code use the correct function name label and hand over the correct pointer

to the individual controller object.

Example:

my_loop_Update(&controller_A);

my_loop_Update(&controller_B);

my_loop_Update(&controller_C);

• Limitations

Using generated code for multiple loops based on the same assembly library introduces some limitation which

need to be kept in mind to prevent address errors and other undesired conflicts. Preventing these conflicts is the

full responsibility of the user!

o Main Filter Type Implementation

The selected compensator type (e.g. 2P2Z, 3P3Z, 4P4Z, etc.) will be used as template to determine

how many filter iterations will be executed by the assembly code library block. To make this most

efficient in terms of execution time, no dynamic adjustment to different filter types is made. Thus, the

generated assembly library only supports the filter type selected.

o Scaling Options

Different scaling options will equally result in incompatible code when used by different controller

objects, which are not using the same number scaling format. Scaling factors, number normalization

and resolution differ significantly depending on the selection made. Using controller objects

configured for different scaling options therefore cannot use the same assembly library.

o Code Features

Code feature selection will have an equally vital impact on the code integrity but does not

necessarily exclude multiple controller object from using the same assembly library.

Assuming multiple controller objects are built using the same controller/filter type and number-

scaling method, but one controller needs anti-windup clamping while the other controller doesn’t.

In this case it is still possible to use the same assembly library, which, however, will always execute

the anti-windup code block. Thus, the second controller needs to hold reasonable thresholds in its

respective data structure spaces to not get cut off by accidentally being clamped to zero.

o Context Save/Restore

If all controller objects are based on the same compensator/filter type and using the same number

scaling method, context save/restore options should be consistent. Nevertheless, if alternate

working registers (ALTWREG) on dsPIC33EP, dsPIC33CH or dsPIC33CK are used, it is important to

verify that all control library function calls like xxx_Update(yyy) are called on the same interrupt

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 75

priority with a properly associated ALWREG set. These ALTWREG sets can be different but must be

accessible and changes to the working registers must not result in conflicts with other tasks.

11.2 Establishing Bi-Directional Control Systems

Control of bi-directional converter (a.k.a. 2-Quadrant Power Supplies) is a very common application for digitally

controlled power converters and are widely used in the industry in applications such as renewable energy storage

devices, automotive 48V-to-12V and 400V-to-12V bus converters or smaller consumer products like USB Power

Delivery source/sink devices.

Developing bi-directional power supplies require the selection of specific topologies supporting the reversal of the

power transfer. Some of them may have the same transfer function in both directions, such as Phase-Shifted Full

Bridge (PSFB) converters or 4-Switch Buck/Boost (4SWBB) converters. Others may have fundamentally different

transfer functions in each direction such as Synchronous Buck converters, which will be turned into a Synchronous

Boost converter when power transfer is reversed.

Power converter types with identical transfer functions in both directions can be controlled by one and the same

control block where only minor changes may have to be made, such as assignment of alternative feedback inputs,

PWM-control outputs and references. Power converter types with different transfer functions may require new sets

of coefficients or maybe even entirely different compensator types of different order with different features.

Providing detailed design guidance for each of these applications is beyond the scope of this user guide. The

major focus of this section is to provide some high-level guidance on certain, dedicated features provided by PS-

DCLD, which might be useful to solve specific design challenges in a convenient and robust way.

• Feedback Structure and Characteristics

2-Quadrant Power Supplies usually offer three fundamental feedback signals:

o Input Voltage VIN (Port A)

o Output Voltage VOUT (Port B)

o Inductor Current IL

When the power transfer is reversed, VIN and VOUT swap positions and IL becomes negative (see Figure 40).

Figure 40: Bi-Directional Power Converter Block Diagram

PowerSmart™
Digital Control Library Designer

UG20181026O-page 76 © 2021 Microchip Technology Inc.

o Signal Offset

Processing bi-directional feedback signals through single-ended Analog-To-Digital Converters usually

requires external pre-conditioning lifting the zero point of the feedback signal above VSS. Typical offsets

added by signal conditioning ICs, for example, are 1.65V for 3.3V devices or 2.5V for 5V devices but offsets

might differ widely when discrete signal conditioning circuits are used. (see Figure 41)

Figure 41: Bi-Directional Current Feedback Signal with Offset

Using ADCs to track analog high-speed signals is highly sensitive to the ADC trigger point location. When

the trigger is not generated in perfect synchronization with the PWM signal the trigger might not occur at

50% of the rising or falling slope of the feedback signal and the taken sample will not represent the most

recent average current (resp. will be affected by some error).

By enabling option Feedback Offset Compensation, code will be added to the assembly routine subtracting

the zero-point offset from the most recent input value before the result will be subtracted from the reference

to get the most recent control error, which will then be processed by the compensation filter.

o Reversing current direction

The catch for the calculation engine with bi-directional current feedback signal conditioning is the effective

inversion of proportions above and below the zero line. While operating in the positive range, increasing

positive currents are represented by increasing number values produced by the ADC (direct proportional

representation). While operating in the negative range, increasing negative currents are represented by

decreasing number values. Although the number representation of the voltage level of the feedback is still

direct proportional, the representation of the physical domain of the absolute current level is inverted

(indirect proportional representation).

As the power supply controller is based on an inverting feedback loop, inverting the proportional

representation of its data input would inevitably result in an inversion of the inverting feedback loop,

effectively flipping it over into a non-inverting feedback loop. As a result, the feedback loop would start

amplifying instead of suppressing transients and the power supply would go unstable instantly.

This undesired behavior needs to be prevented by introducing a signal rectification at the data input of the

controller.

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 77

o Current Feedback Rectification

As mentioned above, when a power converter needs to change its power transfer direction, the feedback

source of the outer loop needs to be swapped from what was the previous output to what was the previous

input and vice versa. If the switch-over process should be seamless and smooth, the current direction also

needs to be inverted at the point where the current crosses the zero line (signal zero offset).

For this purpose, PS-DCLD offers an extension to the Feedback Offset Compensation option called Enable

Signal Rectification Control which allows inverting the most recent error by the invert_input control bit in

the NPNZ16b_t status word.

The following example provides some high-level guidelines of how these features supported by PS-DCLD can

be used to build a bi-directional multi-loop Average Current Mode Control (ACMC) feedback loop.

• Designing an Average Current Mode Control (ACMC) Feedback Loop

The most common approach to establish a bi-directional control stage is by using Average Current Mode

Control (ACMC). This control mode uses a multi-loop system consisting of one outer voltage loop and one

inner current loop. The outer voltage loop is regulating for a constant output voltage by providing a dynamic

current reference to the inner current loop. The output of the inner current loop then adjusts the PWM.

(see Figure 42)

Figure 42: Standard Average Current Mode Control Feedback Loop Block Diagram

As shown in Figure 42, an ACMC feedback loop consists of two independent feedback loops. The following

example provides a high-level guidance of the steps necessary to establish a dual loop ACMC feedback loop

using PS-DCLD. However, many important aspects like device specific peripheral configuration, frequency

domain design aspects or state machine design with soft-start and protection features are not covered in this

example.

PowerSmart™
Digital Control Library Designer

UG20181026O-page 78 © 2021 Microchip Technology Inc.

Using PS-DCLD this control system is established by following these steps:

o Open PS-DCLD and create the 2P2Z voltage loop controller V_LOOP, which reads the output voltage,

compares it to a user defined reference variable V_REF and produces an output value, which is stored in

the user-defined variable I_REF.

o Enable Anti-Windup for both, minimum and maximum output levels

o Input data scaling needs to be set to a resolution of 12-bit (ADC data width) with option

Add Error Normalization enabled.

o Input data gain is set to the voltage divider gain calculated by 𝐺 =
𝑅2

𝑅1+𝑅2

o Go to Source Code Configuration and enable option

Basic Feature Extensions → Add Enable/Disable Feature

o Save the configuration and generate the voltage loop control code

o In user code, add code initializing the voltage loop:

o Set data source:

V_LOOP.Ports.Source.ptrAddress = &ADCBUF4; // ADC buffer #4

 // (output voltage)

o Set data output target:

V_LOOP.Ports.Target.ptrAddress = &I_REF; // V_LOOP output writes to

 // current reference

o Set Current clamping values:

V_LOOP.Limits.MinOutput = -200; // ADC ticks representing min current

V_LOOP.Limits.MaxOutput = 1600; // ADC ticks representing max current

 // without offset (!!!)

o Set voltage reference source:

V_LOOP.Ports.ptrControlReference = &V_REF; // Assign V_REF variable

o Call the controller initialization routine to initialize data arrays and number scaling factors

vloop_Init(&V_LOOP); // Call controller initialization

o Open PS-DCLD and create the 2P2Z current loop controller I_LOOP, which reads the inductor current

and compares it to the reference variable I_REF defined previously, which is continuously updated by the

voltage loop as soon as the entire control loop is enabled. The output of this control loop is written to the

dedicated PWM registers (e.g. Duty Cycle)

o Input data scaling needs to be set to a resolution of 12-bit (ADC data width) with option

Add Error Normalization enabled.

o Enable option Feedback Offset Compensation and specify the offset I_LOOP.Ports.Source.Offset

in user code

o Input data gain is set to the current sense gain calculated by 𝐺 = 𝑅𝑆𝐻𝑈𝑁𝑇 × 𝐺𝐴𝑀𝑃

o Go to Source Code Configuration and enable option Basic Feature Extensions →

Add Enable/Disable Feature

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 79

o Save the configuration and generate the current loop control code

o In user code, add code initializing the current loop:

o Set data source:

I_LOOP.Ports.Source.ptrAddress = &ADCBUF0; // ADC buffer #0

 // (inductor current)

o Set data output target:

I_LOOP.Ports.Target.ptrAddress = &PG1DC; // I_LOOP output writes to PWM1

 // Duty Cycle

o Set Current clamping values:

I_LOOP.Limits.MinOutput = 400; // PWM ticks representing min duty ratio

I_LOOP.Limits.MaxOutput = 8000; // PWM ticks representing max duty ratio

o Set current reference source:

I_LOOP.Ports.ptrControlReference = &I_REF; // Assign I_REF variable

o Call the controller initialization routine to initialize data arrays and number scaling factors

i_loop_Init(&I_LOOP); // Call controller initialization

o Go to the interrupt service routine of the output voltage ADC Channel and add the function calls of

voltage and current loop controllers:

v_loop_Update(&V_LOOP); // Call voltage loop controller

i_loop_Update(&I_LOOP); // Call Current loop controller

o Enable control

V_LOOP.Status.enable = true; // Enable voltage loop

I_LOOP.Status.enable = true; // Enable current loop

Note 1:

When working with current feedback signals with offset, it should be considered that the zero-line of the

current amplifier device might be affected by tolerances and that the accuracy of the ADC samples are

highly dependent on the accuracy of the ADC trigger placement. Both effects might result in deviations

from the data sheet-value of the zero-line feedback voltage.

To ensure the feedback loops work correctly even at no load conditions, it is highly recommended to

adjust the voltage loop anti-windup minimum with some tolerance, allowing small negative currents.

Note 2:

In this example voltage and current loop are daisy-chained (cascaded) inside the output voltage ADC

interrupt service routine. When both controllers are executed at the same frequency, it is important to

keep in mind that the maximum allowed frequency of current reference perturbations should be at least

6-10 times slower than the response time of the current loop. This can be accomplished by adjusting the

open loop cross-over frequency of the voltage loop approx. one magnitude below the open loop cross-

over frequency of the current loop.

PowerSmart™
Digital Control Library Designer

UG20181026O-page 80 © 2021 Microchip Technology Inc.

Note 3:

Daisy-chaining control loops can be simplified by adding the following features to the control loop library:

o Open the voltage loop configuration in PS-DCLD

o Go to tab Advanced and enable option Add User Extensions → Add Cascade Function Call

o Save the configuration and re-generate the voltage loop control code

o Add the following lines to the controller configuration of the voltage loop controller:

V_LOOP.ExtensionHooks.ptrExtHookEndFunction = (uint16_t)&i_loop_Update;

V_LOOP.ExtensionHooks.ExtHookEndFunctionParam = (uint16_t)&I_LOOP;

o Remove the current loop function call from the ADC ISR:

i_loop_Update(&I_LOOP); // Call Current loop controller

The current loop will now be automatically called by the voltage loop controller. All other settings remain

untouched.

This control system is now suitable for operating the converter in one direction. However, there might be

device-specific, additional parameters which have to be configured such as Context Management Options,

Basic Feature Extensions and more, which are ignored for the sake of keeping this example focused on

creation and implementation process of the ACMC controller code.

• Adding Bi-Directional Control Features

As mentioned above, PS-DCLD offers some features which can be used to turn this unidirectional control

system into a bi-directional control system. The standard ACMC control system shown in Figure 42 only has

one voltage feedback loop and only accepts positive currents.

Reversing power transfer would still be possible by re-assigning the input voltage ADC buffer as input source

of the voltage loop. Although this is legitimate and would work without problems, it might be more elegant and

convenient to build an input switch into the control library itself, which allows a simple switch over between the

two sources using a simple control bit in the NPNZ16b_t status word (See block A in Figure 43).

The second problem we must solve is to reverse the current direction. We already established the level shifter

for offset compensation by enabling the Feedback Offset Compensation option in Controller → Input Data

Specification. To gain control over the current feedback signal polarity, this option is extended by enabling the

second option Enable Signal Rectification Control. This will enable the direction control DIR shown in block B

in Figure 43.

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 81

Figure 43: Bi-Directional Average Current Mode Control Feedback Loop Block Diagram

Enabling both features requires the following steps:

o Open the configuration of the voltage loop controller V_LOOP

o Go to Source Code Configuration and enable option Automated Data Interface →

Add Alternate Input Source

o Save the configuration and generate the updated library file

o In user code, add the following code line to the controller initialization

V_LOOP. Ports.AltSource.ptrAddress = &ADCBUF6; // assign pointer to VIN ADC buffer

o Open the configuration of the current loop controller I_LOOP

o Go to Controller and enable option Input Data Specification → Enable Signal Rectification Control

o Save the configuration and generate the updated library file

Now the control loop is ready to perform a switch over power transfer directions by executing the following two

code lines:

o Switch over from down-stream to up-stream operation:

V_LOOP.Status.swap_source = true; // switch from output to input

I_LOOP.Status.invert_input = true; // invert current feedback polarity

o Switch over from up-stream to down-stream operation:

V_LOOP.Status.swap_source = false; // switch from output to input

I_LOOP.Status.invert_input = false; // invert current feedback polarity

A

B

PowerSmart™
Digital Control Library Designer

UG20181026O-page 82 © 2021 Microchip Technology Inc.

12.0 TABLE OF FIGURES

Figure 1: PowerSmart™ SDK Digital Control Library Designer Window ...1

Figure 2: PowerSmart™ Digital Control Library Designer Main Window Overview ...4

Figure 3: PowerSmart™ Digital Control Library Designer Frequency Domain View ...5

Figure 4: PowerSmart™ Digital Control Library Designer Frequency Domain View with Workflow History6

Figure 5: Voltage Divider Gain Calculator ... 11

Figure 6: Shunt Amplifier Gain Calculator ... 11

Figure 7: Current Sense Transformer Gain Calculator .. 11

Figure 8: Digital Feedback Source Gain Calculator .. 12

Figure 9: Code Generator Configuration and Timing Diagram.. 15

Figure 10: Block Diagram Overview .. 17

Figure 11: NPNZ16b_t Controller Object Block Diagram .. 18

Figure 12: Code Generator Output View ... 25

Figure 13: Include Assembly Include File Option .. 26

Figure 14: Configuration Code Template .. 27

Figure 15: Code Generator Options .. 29

Figure 16: Assigning user-specific names for variables and objects .. 30

Figure 17: Enabled Controller Saturation Example ... 37

Figure 18: Advanced Code Generator Options ... 38

Figure 19: Closed Loop Model of Switched-Mode Power Supply Control System ... 39

Figure 20: Enabled P-Term Control Loop Generation ... 43

Figure 21: Nominal Feedback Level Calculator .. 44

Figure 22: Nominal Control Output Level Calculator ... 44

Figure 23: Duty Ratio Calculator ... 45

Figure 24: Loop Measurement Setup .. 46

Figure 25: Power Plant Measurement Result of Voltage Mode Buck Converter .. 47

Figure 26: Adaptive Gain Control (Feed Forward) Block Diagram .. 53

Figure 27: Adaptive Gain Control Configuration .. 55

Figure 28: NPNZ16b Control Loop Flow Chart.. 58

Figure 29: MPLAB® X Project Root Directory Declaration .. 65

Figure 30: Source Code File Target Directory Declaration ... 66

Figure 31: Code Generator File Export Window ... 67

Figure 32: Code Generator Tool Bar ... 67

Figure 33: Select the PS-DCLD Configuration File ... 68

Figure 34: Adding PS-DCLD Configuration Files to a Project ... 68

Figure 35: Opening PS-DCLD from the MPLAB X IDE ... 69

Figure 36: Include file path in #include pre-compiler directives... 70

Figure 37: Application Information Window ... 71

Figure 38: Open the Output Window from the View menu .. 72

Figure 39: Process Output Window ... 72

Figure 40: Bi-Directional Power Converter Block Diagram ... 75

Figure 41: Bi-Directional Current Feedback Signal with Offset ... 76

Figure 42: Standard Average Current Mode Control Feedback Loop Block Diagram .. 77

Figure 43: Bi-Directional Average Current Mode Control Feedback Loop Block Diagram 81

file:///D:/Applications/Digital%20Control%20Library%20SDK/WindowsForms/Digital%20Control%20Loop%20Designer%20zDLD/user_guide/181026_dcld_beta_user_guide.docx%23_Toc61629314
file:///D:/Applications/Digital%20Control%20Library%20SDK/WindowsForms/Digital%20Control%20Loop%20Designer%20zDLD/user_guide/181026_dcld_beta_user_guide.docx%23_Toc61629315
file:///D:/Applications/Digital%20Control%20Library%20SDK/WindowsForms/Digital%20Control%20Loop%20Designer%20zDLD/user_guide/181026_dcld_beta_user_guide.docx%23_Toc61629316
file:///D:/Applications/Digital%20Control%20Library%20SDK/WindowsForms/Digital%20Control%20Loop%20Designer%20zDLD/user_guide/181026_dcld_beta_user_guide.docx%23_Toc61629317
file:///D:/Applications/Digital%20Control%20Library%20SDK/WindowsForms/Digital%20Control%20Loop%20Designer%20zDLD/user_guide/181026_dcld_beta_user_guide.docx%23_Toc61629326
file:///D:/Applications/Digital%20Control%20Library%20SDK/WindowsForms/Digital%20Control%20Loop%20Designer%20zDLD/user_guide/181026_dcld_beta_user_guide.docx%23_Toc61629330
file:///D:/Applications/Digital%20Control%20Library%20SDK/WindowsForms/Digital%20Control%20Loop%20Designer%20zDLD/user_guide/181026_dcld_beta_user_guide.docx%23_Toc61629331
file:///D:/Applications/Digital%20Control%20Library%20SDK/WindowsForms/Digital%20Control%20Loop%20Designer%20zDLD/user_guide/181026_dcld_beta_user_guide.docx%23_Toc61629332
file:///D:/Applications/Digital%20Control%20Library%20SDK/WindowsForms/Digital%20Control%20Loop%20Designer%20zDLD/user_guide/181026_dcld_beta_user_guide.docx%23_Toc61629337
file:///D:/Applications/Digital%20Control%20Library%20SDK/WindowsForms/Digital%20Control%20Loop%20Designer%20zDLD/user_guide/181026_dcld_beta_user_guide.docx%23_Toc61629338
file:///D:/Applications/Digital%20Control%20Library%20SDK/WindowsForms/Digital%20Control%20Loop%20Designer%20zDLD/user_guide/181026_dcld_beta_user_guide.docx%23_Toc61629342
file:///D:/Applications/Digital%20Control%20Library%20SDK/WindowsForms/Digital%20Control%20Loop%20Designer%20zDLD/user_guide/181026_dcld_beta_user_guide.docx%23_Toc61629343
file:///D:/Applications/Digital%20Control%20Library%20SDK/WindowsForms/Digital%20Control%20Loop%20Designer%20zDLD/user_guide/181026_dcld_beta_user_guide.docx%23_Toc61629344
file:///D:/Applications/Digital%20Control%20Library%20SDK/WindowsForms/Digital%20Control%20Loop%20Designer%20zDLD/user_guide/181026_dcld_beta_user_guide.docx%23_Toc61629345
file:///D:/Applications/Digital%20Control%20Library%20SDK/WindowsForms/Digital%20Control%20Loop%20Designer%20zDLD/user_guide/181026_dcld_beta_user_guide.docx%23_Toc61629347

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 83

13.0 LEGAL TERMS FOR DEVELOPMENT BOARDS SOLD AND USED IN EUROPE

REGARDING ZVEI REGULATIONS

IMPORTANT NOTICE TO CUSTOMERS

Development Tools marked as “NON-PUBLIC CONCEPT TOOL” are NOT part of

Microchip’s usual development tool portfolio and no support is provided though

Microchip’s common support channels. Changes may be applied without any further

notice.

This specific hardware has been developed as proof-of-concept board or for training

purposes for PROFESSIONAL USERS ONLY. You are not allowed to use this

development board in any real application and others than professional lab

environments. This board has not been certified or tested for any standards or any

requirement such like EMC or safety.

SOFTWARE LICENSE AGREEMENT

Copyright © 2021 Microchip Technology Inc. All rights reserved.

Microchip licenses to you the right to use, modify, copy and distribute Software only when embedded on

a Microchip microcontroller or digital signal controller, which is integrated into your product or third

party product (pursuant to the sublicense terms in the accompanying license agreement). You should

refer to the license agreement accompanying this Software for additional information regarding your

rights and obligations. SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY

WARRANTY OF MERCHANTABILITY, TITLE, NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR

PURPOSE. IN NO EVENT SHALL MICROCHIP OR ITS LICENSORS BE LIABLE OR OBLIGATED UNDER

CONTRACT, NEGLIGENCE, STRICT LIABILITY, CONTRIBUTION, BREACH OF WARRANTY, OR OTHER

LEGAL EQUITABLE THEORY ANY DIRECT OR INDIRECT DAMAGES OR EXPENSES INCLUDING BUT

NOT LIMITED TO ANY INCIDENTAL, SPECIAL, INDIRECT, PUNITIVE OR CONSEQUENTIAL DAMAGES,

LOST PROFITS OR LOST DATA, COST OF PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY,

SERVICES, OR ANY CLAIMS BY THIRD PARTIES (INCLUDING BUT NOT LIMITED TO ANY DEFENSE

THEREOF), OR OTHER SIMILAR COSTS.

PowerSmart™
Digital Control Library Designer

UG20181026O-page 84 © 2021 Microchip Technology Inc.

LEGAL NOTICE

Information contained in this publication regarding device applications and the like is provided only for your

convenience and may be superseded by updates. It is your responsibility to ensure that your application meets

with your specifications.

MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR

IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION,

INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR

FITNESS FOR PURPOSE.

Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support

and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold

harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses

are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

TRADEMARKS

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC,

PICmicro, PICSTART, rfPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in

the U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control

Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK,

ECAN, ECONOMONITOR, FanSense, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM,

MPLAB Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM, PICDEM.net, PICtail, PIC32 logo, PowerCal,

PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total Endurance, UNI/O, WiperLock and

ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service

mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of

their respective companies.

© 2021, Microchip Technology Incorporated, All Rights Reserved.

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California and
India. The Company’s quality system processes and procedures are for its
PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial
EEPROMs, microperipherals, nonvolatile memory and analog products. In
addition, Microchip’s quality system for the design and manufacture of
development systems is ISO 9001:2000 certified.

PowerSmart™
Digital Control Library Designer

© 2021 Microchip Technology Inc. UG20181026O-page 85

CONTACT INFORMATION

Corporate Office

2355 West Chandler Blvd. Technical Support: http://www.microchip.com/support

Chandler, AZ 85224-6199 Web Address: www.microchip.com

Tel: 480-792-7200 ▪ Fax: 480-792-7277

AMERICAS

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Osaka
Tel: 81-66-152-7160
Fax: 81-66-152-9310
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-330-9305
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

PowerSmart™
Digital Control Library Designer

UG20181026O-page 86 © 2021 Microchip Technology Inc.

NOTES:

	INTRODUCTION
	TABLE OF CONTENTS
	1.0 Graphical User Interface Overview
	2.0 Frequency Domain Configuration (Bode Plot)
	3.0 Time Domain Window
	4.0 The NPNZ16b_t Data Structure
	5.0 Code Generator Output Window
	6.0 Code Generator Options
	7.0 Advanced Code Generator Options
	8.0 Code Generation
	9.0 Using PS-DCLD With MPLAB® X IDE
	10.0 Application Information / Troubleshooting
	11.0 Common Use Cases and Application Guidance
	12.0 Table of Figures
	13.0 Legal Terms For Development Boards Sold And Used In Europe Regarding ZVEI Regulations
	LEGAL NOTICE
	TRADEMARKS
	CONTACT INFORMATION

